Polymer molecules within a brush are stretched away from the attachment surface as a result of the fact that they repel each other (steric repulsion or osmotic pressure). More precisely,8 they are more elongated near the attachment point and unstretched at the free end, as depicted on the drawing.
More precisely, within the approximation derived by Milner, Witten, Cates,9 the average density of all monomers in a given chain is always the same up to a prefactor:
ϕ ( z , ρ ) = ∂ n ∂ z {\displaystyle \phi (z,\rho )={\frac {\partial n}{\partial z}}}
n ( z , ρ ) = 2 N π arcsin ( z ρ ) {\displaystyle n(z,\rho )={\frac {2N}{\pi }}\arcsin \left({\frac {z}{\rho }}\right)}
where ρ {\displaystyle \rho } is the altitude of the end monomer and N {\displaystyle N} the number of monomers per chain.
The averaged density profile ϵ ( ρ ) {\displaystyle \epsilon (\rho )} of the end monomers of all attached chains, convoluted with the above density profile for one chain, determines the density profile of the brush as a whole:
ϕ ( z ) = ∫ z ∞ ∂ n ( z , ρ ) ∂ z ϵ ( ρ ) d ρ {\displaystyle \phi (z)=\int _{z}^{\infty }{\frac {\partial n(z,\rho )}{\partial z}}\,\epsilon (\rho )\,{\rm {d}}\rho }
A dry brush has a uniform monomer density up to some altitude H {\displaystyle H} . One can show10 that the corresponding end monomer density profile is given by:
ϵ d r y ( ρ , H ) = ρ / H N a 1 − ρ 2 / H 2 {\displaystyle \epsilon _{\rm {dry}}(\rho ,H)={\frac {\rho /H}{Na{\sqrt {1-\rho ^{2}/H^{2}}}}}}
where a {\displaystyle a} is the monomer size.
The above monomer density profile n ( z , ρ ) {\displaystyle n(z,\rho )} for one single chain minimizes the total elastic energy of the brush,
U = ∫ 0 ∞ ϵ ( ρ ) d ρ ∫ 0 N d n k T 2 N a 2 ( ∂ z ( n , ρ ) ∂ n ) 2 {\displaystyle U=\int _{0}^{\infty }\epsilon (\rho )\,{\rm {d}}\rho \,\int _{0}^{N}\,{\rm {d}}n\,{\frac {kT}{2Na^{2}}}\left({\frac {\partial z(n,\rho )}{\partial n}}\right)^{2}}
regardless of the end monomer density profile ϵ ( ρ ) {\displaystyle \epsilon (\rho )} , as shown in.1112
As a consequence,13 the structure of any brush can be derived from the brush density profile ϕ ( z ) {\displaystyle \phi (z)} . Indeed, the free end distribution is simply a convolution of the density profile with the free end distribution of a dry brush:
ϵ ( ρ ) = ∫ ρ ∞ − d ϕ ( H ) d H ϵ d r y ( ρ , H ) {\displaystyle \epsilon (\rho )=\int _{\rho }^{\infty }-{\frac {{\rm {d}}\phi (H)}{{\rm {d}}H}}\epsilon _{\rm {dry}}(\rho ,H)} .
Correspondingly, the brush elastic free energy is given by:
F e l k T = π 2 24 N 2 a 5 ∫ 0 ∞ { − z 3 d ϕ ( z ) d z } d z {\displaystyle {\frac {F_{\rm {el}}}{kT}}={\frac {\pi ^{2}}{24N^{2}a^{5}}}\int _{0}^{\infty }\left\{-z^{3}{\frac {{\rm {d}}\phi (z)}{{\rm {d}}z}}\right\}{\rm {d}}z} .
This method has been used to derive wetting properties of polymer melts on polymer brushes of the same species14 and to understand fine interpenetration asymmetries between copolymer lamellae15 that may yield very unusual non-centrosymmetric lamellar structures.16
Polymer brushes can be used in Area-selective deposition.17 Area-selective deposition is a promising technique for positional self-alignment of materials at a prepatterned surface.
Milner, S. T. (1991). "Polymer Brushes". Science. 251 (4996): 905–14. Bibcode:1991Sci...251..905M. doi:10.1126/science.251.4996.905. PMID 17847384. /wiki/Bibcode_(identifier) ↩
Chremos, A; Douglas, JF (2018). "A comparative study of thermodynamic, conformational, and structural properties of bottlebrush with star and ring polymer melts". J. Chem. Phys. 149 (4): 044904. Bibcode:2018JChPh.149d4904C. doi:10.1063/1.5034794. PMC 11446256. PMID 30068167. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446256 ↩
Halperin, A.; Tirrell, M.; Lodge, T. P. (1992). "Tethered chains in polymer microstructures". Macromolecules: Synthesis, Order and Advanced Properties. Advances in Polymer Science. Vol. 100/1. pp. 31–71. doi:10.1007/BFb0051635. ISBN 978-3-540-54490-6. 978-3-540-54490-6 ↩
Laradji, Mohamed; Guo, Hong; Zuckermann, Martin (1994). "Off-lattice Monte Carlo simulation of polymer brushes in good solvents". Physical Review E. 49 (4): 3199–3206. Bibcode:1994PhRvE..49.3199L. doi:10.1103/PhysRevE.49.3199. PMID 9961588. /wiki/Bibcode_(identifier) ↩
Kaznessis, Yiannis N.; Hill, Davide A.; Maginn, Edward J. (1998). "Molecular Dynamics Simulations of Polar Polymer Brushes". Macromolecules. 31 (9): 3116–3129. Bibcode:1998MaMol..31.3116K. CiteSeerX 10.1.1.465.5479. doi:10.1021/ma9714934. /wiki/Bibcode_(identifier) ↩
Szleifer, I; Carignano, MA (1996). Tethered Polymer Layers. Vol. XCIV. p. 165. doi:10.1002/9780470141533.ch3. ISBN 978-0-471-19143-8. {{cite book}}: |journal= ignored (help) 978-0-471-19143-8 ↩
Milner, S. T; Witten, T. A; Cates, M. E (1988). "A Parabolic Density Profile for Grafted Polymers". Europhysics Letters (EPL). 5 (5): 413–418. Bibcode:1988EL......5..413M. doi:10.1209/0295-5075/5/5/006. /wiki/Bibcode_(identifier) ↩
Milner, S. T; Witten, T. A; Cates, M. E (1989). "Effects of polydispersity in the end-grafted polymer brush". Macromolecules. 22 (2): 853–861. Bibcode:1989MaMol..22..853M. doi:10.1021/ma00192a057. /wiki/Bibcode_(identifier) ↩
Zhulina, E.B.; Borisov, O.V. (July 1991). "Structure and stabilizing properties of grafted polymer layers in a polymer medium". Journal of Colloid and Interface Science. 144 (2): 507–520. Bibcode:1991JCIS..144..507Z. doi:10.1016/0021-9797(91)90416-6. /wiki/Bibcode_(identifier) ↩
Gay, C. (1997). "Wetting of a polymer brush by a chemically identical polymer melt". Macromolecules. 30 (19): 5939–5943. Bibcode:1997MaMol..30.5939G. doi:10.1021/ma970107f. /wiki/Bibcode_(identifier) ↩
Leibler, L; Gay, C; Erukhimovich, I (1999). "Conditions for the existence of non-centrosymmetric copolymer lamellar systems". Europhysics Letters (EPL). 46 (4): 549–554. Bibcode:1999EL.....46..549L. doi:10.1209/epl/i1999-00277-9. /wiki/Bibcode_(identifier) ↩
Goldacker, T; Abetz, V; Stadler, R; Erukhimovich, I; Leibler, L (1999). "Non-centrosymmetric superlattices in block copolymer blends". Nature. 398 (6723): 137. Bibcode:1999Natur.398..137G. doi:10.1038/18191. /wiki/Bibcode_(identifier) ↩
Lundy, Ross; Yadav, Pravind; Selkirk, Andrew; Mullen, Eleanor; Ghoshal, Tandra; Cummins, Cian; Morris, Michael A. (2019-09-17). "Optimizing Polymer Brush Coverage To Develop Highly Coherent Sub-5 nm Oxide Films by Ion Inclusion". Chemistry of Materials. 31 (22): 9338–9345. doi:10.1021/acs.chemmater.9b02856. ISSN 0897-4756. /wiki/Doi_(identifier) ↩