The generalization to higher orders via ratios of Jordan's totient is
with Dirichlet series
It is also the Dirichlet convolution of a power and the square of the Möbius function,
If
is the characteristic function of the squares, another Dirichlet convolution leads to the generalized σ-function,
Leonard Eugene Dickson "History of the Theory Of Numbers", Vol. 1, p. 123, Chelsea Publishing 1952. ↩
Journal für die reine und angewandte Mathematik, vol. 83, 1877, p. 288. Cf. H. Weber, Elliptische Functionen, 1901, 244-5; ed. 2, 1008 (Algebra III), 234-5 ↩