Let ( X , A , μ ) {\displaystyle (X,{\cal {A}},\mu )} be a measure space, and let ( Y , T ) {\displaystyle (Y,{\cal {T}})} be a topological space. For any ( A , σ ( T ) ) {\displaystyle ({\cal {A}},\sigma ({\cal {T}}))} -measurable function f : X → Y {\displaystyle f:X\to Y} , we say the essential range of f {\displaystyle f} to mean the set
Equivalently, e s s . i m ( f ) = supp ( f ∗ μ ) {\displaystyle \operatorname {ess.im} (f)=\operatorname {supp} (f_{*}\mu )} , where f ∗ μ {\displaystyle f_{*}\mu } is the pushforward measure onto σ ( T ) {\displaystyle \sigma ({\cal {T}})} of μ {\displaystyle \mu } under f {\displaystyle f} and supp ( f ∗ μ ) {\displaystyle \operatorname {supp} (f_{*}\mu )} denotes the support of f ∗ μ . {\displaystyle f_{*}\mu .} 4
The phrase "essential value of f {\displaystyle f} " is sometimes used to mean an element of the essential range of f . {\displaystyle f.} 5: Exercise 4.1.6 6: Example 7.1.11
Say ( Y , T ) {\displaystyle (Y,{\cal {T}})} is C {\displaystyle \mathbb {C} } equipped with its usual topology. Then the essential range of f is given by
In other words: The essential range of a complex-valued function is the set of all complex numbers z such that the inverse image of each ε-neighbourhood of z under f has positive measure.
Say ( Y , T ) {\displaystyle (Y,{\cal {T}})} is discrete, i.e., T = P ( Y ) {\displaystyle {\cal {T}}={\cal {P}}(Y)} is the power set of Y , {\displaystyle Y,} i.e., the discrete topology on Y . {\displaystyle Y.} Then the essential range of f is the set of values y in Y with strictly positive f ∗ μ {\displaystyle f_{*}\mu } -measure:
The notion of essential range can be extended to the case of f : X → Y {\displaystyle f:X\to Y} , where Y {\displaystyle Y} is a separable metric space. If X {\displaystyle X} and Y {\displaystyle Y} are differentiable manifolds of the same dimension, if f ∈ {\displaystyle f\in } VMO ( X , Y ) {\displaystyle (X,Y)} and if e s s . i m ( f ) ≠ Y {\displaystyle \operatorname {ess.im} (f)\neq Y} , then deg f = 0 {\displaystyle \deg f=0} .13
Zimmer, Robert J. (1990). Essential Results of Functional Analysis. University of Chicago Press. p. 2. ISBN 0-226-98337-4. 0-226-98337-4 ↩
Kuksin, Sergei; Shirikyan, Armen (2012). Mathematics of Two-Dimensional Turbulence. Cambridge University Press. p. 292. ISBN 978-1-107-02282-9. 978-1-107-02282-9 ↩
Kon, Mark A. (1985). Probability Distributions in Quantum Statistical Mechanics. Springer. pp. 74, 84. ISBN 3-540-15690-9. 3-540-15690-9 ↩
Driver, Bruce (May 7, 2012). Analysis Tools with Examples (PDF). p. 327. Cf. Exercise 30.5.1. https://mathweb.ucsd.edu/~bdriver/240C-S2018/Lecture_Notes/2012%20Notes/240Lecture_Notes_Ver8.pdf ↩
Segal, Irving E.; Kunze, Ray A. (1978). Integrals and Operators (2nd revised and enlarged ed.). Springer. p. 106. ISBN 0-387-08323-5. 0-387-08323-5 ↩
Bogachev, Vladimir I.; Smolyanov, Oleg G. (2020). Real and Functional Analysis. Moscow Lectures. Springer. p. 283. ISBN 978-3-030-38219-3. ISSN 2522-0314. 978-3-030-38219-3 ↩
Weaver, Nik (2013). Measure Theory and Functional Analysis. World Scientific. p. 142. ISBN 978-981-4508-56-8. 978-981-4508-56-8 ↩
Bhatia, Rajendra (2009). Notes on Functional Analysis. Hindustan Book Agency. p. 149. ISBN 978-81-85931-89-0. 978-81-85931-89-0 ↩
Folland, Gerald B. (1999). Real Analysis: Modern Techniques and Their Applications. Wiley. p. 187. ISBN 0-471-31716-0. 0-471-31716-0 ↩
Cf. Tao, Terence (2012). Topics in Random Matrix Theory. American Mathematical Society. p. 29. ISBN 978-0-8218-7430-1. 978-0-8218-7430-1 ↩
Cf. Freedman, David (1971). Markov Chains. Holden-Day. p. 1. /wiki/David_A._Freedman ↩
Cf. Chung, Kai Lai (1967). Markov Chains with Stationary Transition Probabilities. Springer. p. 135. /wiki/Chung_Kai-lai ↩
Brezis, Haïm; Nirenberg, Louis (September 1995). "Degree theory and BMO. Part I: Compact manifolds without boundaries". Selecta Mathematica. 1 (2): 197–263. doi:10.1007/BF01671566. /wiki/Doi_(identifier) ↩