Given a nonempty set A ⊂ X {\displaystyle A\subset X} for some vector space X {\displaystyle X} , then the recession cone recc ( A ) {\displaystyle \operatorname {recc} (A)} is given by
If A {\displaystyle A} is additionally a convex set then the recession cone can equivalently be defined by
If A {\displaystyle A} is a nonempty closed convex set then the recession cone can equivalently be defined as
The asymptotic cone for C ⊆ X {\displaystyle C\subseteq X} is defined by
By the definition it can easily be shown that recc ( C ) ⊆ C ∞ . {\displaystyle \operatorname {recc} (C)\subseteq C_{\infty }.} 10
In a finite-dimensional space, then it can be shown that C ∞ = recc ( C ) {\displaystyle C_{\infty }=\operatorname {recc} (C)} if C {\displaystyle C} is nonempty, closed and convex.11 In infinite-dimensional spaces, then the relation between asymptotic cones and recession cones is more complicated, with properties for their equivalence summarized in.12
Rockafellar, R. Tyrrell (1997) [1970]. Convex Analysis. Princeton, NJ: Princeton University Press. pp. 60–76. ISBN 978-0-691-01586-6. 978-0-691-01586-6 ↩
Borwein, Jonathan; Lewis, Adrian (2006). Convex Analysis and Nonlinear Optimization: Theory and Examples (2 ed.). Springer. ISBN 978-0-387-29570-1. 978-0-387-29570-1 ↩
Zălinescu, Constantin (2002). Convex analysis in general vector spaces. River Edge, NJ: World Scientific Publishing Co., Inc. pp. 6–7. ISBN 981-238-067-1. MR 1921556. 981-238-067-1 ↩
Kim C. Border. "Sums of sets, etc" (PDF). Retrieved March 7, 2012. /wiki/Kim_C._Border ↩
Alfred Auslender; M. Teboulle (2003). Asymptotic cones and functions in optimization and variational inequalities. Springer. pp. 25–80. ISBN 978-0-387-95520-9. 978-0-387-95520-9 ↩
Zălinescu, Constantin (1993). "Recession cones and asymptotically compact sets". Journal of Optimization Theory and Applications. 77 (1). Springer Netherlands: 209–220. doi:10.1007/bf00940787. ISSN 0022-3239. S2CID 122403313. /wiki/Doi_(identifier) ↩
J. Dieudonné (1966). "Sur la séparation des ensembles convexes". Math. Ann.. 163: 1–3. doi:10.1007/BF02052480. S2CID 119742919. /wiki/Doi_(identifier) ↩