By the start of the 20th century, most astronomers recognized that Mars was far colder and drier than Earth. The presence of oceans was no longer accepted, so the paradigm changed to an image of Mars as a "dying" planet with only a meager amount of water. The dark areas, which could be seen to change seasonally, were then thought to be tracts of vegetation. The person most responsible for popularizing this view of Mars was Percival Lowell (1855–1916), who imagined a race of Martians constructing a network of canals to bring water from the poles to the inhabitants at the equator. Although generating tremendous public enthusiasm, Lowell's ideas were rejected by most astronomers. The majority view of the scientific establishment at the time is probably best summarized by English astronomer Edward Walter Maunder (1851–1928) who compared the climate of Mars to conditions atop a twenty-thousand-foot (6,100 m) peak on an arctic island where only lichen might be expected to survive.
For many years it was thought that the observed remains of floods were caused by the release of water from a global water table, but research published in 2015 reveals regional deposits of sediment and ice emplaced 450 million years earlier to be the source. "Deposition of sediment from rivers and glacial melt filled giant canyons beneath primordial ocean contained within the planet's northern lowlands. It was the water preserved in these canyon sediments that was later released as great floods, the effects of which can be seen today."
It is widely accepted that Mars had abundant water very early in its history. Minerals that incorporate water or form in the presence of water are generally termed "aqueous minerals". Hydrated minerals are minerals which have undergone a chemical reaction which adds water to their crystal structure.
One direct effect of chemical weathering is to consume water and other reactive chemical species, taking them from mobile reservoirs like the atmosphere and hydrosphere and sequestering them in rocks and minerals. The amount of water in the Martian crust stored as hydrated minerals is currently unknown, but may be quite large. For example, mineralogical models of the rock outcroppings examined by instruments on the Opportunity rover at Meridiani Planum suggest that the sulfate deposits there could contain up to 22% water by weight.
On Earth, all chemical weathering reactions involve water to some degree. Many secondary minerals do not actually incorporate water, but still require water to form. Some examples of anhydrous secondary minerals include many carbonates, some sulfates (e.g., anhydrite), and metallic oxides such as the iron oxide mineral hematite. On Mars, a few of these weathering products could theoretically form without water or with scant amounts present as ice or in thin molecular-scale films (monolayers).
Aqueous minerals are sensitive indicators of the type of environment that existed when the minerals formed. The ease with which aqueous reactions occur (see Gibbs free energy) depends on the pressure, temperature, and on the concentrations of the gaseous and soluble species involved. Two important properties are pH and oxidation-reduction potential (Eh). For example, the sulfate mineral jarosite forms only in low pH (highly acidic) water. Phyllosilicates usually form in water of neutral to high pH (alkaline). Eh is a measure of the oxidation state of an aqueous system. Together Eh and pH indicate the types of minerals that are thermodynamically most stable and therefore most likely to form from a given set of aqueous components. Thus, past environmental conditions on Mars, including those conducive to life, can be inferred from the types of minerals present in the rocks.
The rates at which primary minerals convert to secondary aqueous minerals vary. Primary silicate minerals crystallize from magma under pressures and temperatures vastly higher than conditions at the surface of a planet. When exposed to a surface environment these minerals are out of equilibrium and will tend to interact with available chemical components to form more stable mineral phases. In general, the silicate minerals that crystallize at the highest temperatures (solidify first in a cooling magma) weather the most rapidly. On Earth and Mars, the most common mineral to meet this criterion is olivine, which readily weathers to clay minerals in the presence of water. Olivine is widespread on Mars, suggesting that Mars' surface has not been pervasively altered by water; abundant geological evidence suggests otherwise.
Over 60 meteorites have been found that came from Mars. Some of them contain evidence that they were exposed to water when on Mars. Some Martian meteorites called basaltic shergottites, appear (from the presence of hydrated carbonates and sulfates) to have been exposed to liquid water prior to ejection into space. It has been shown that another class of meteorites, the nakhlites, were suffused with liquid water around 620 million years ago and that they were ejected from Mars around 10.75 million years ago by an asteroid impact. They fell to Earth within the last 10,000 years. Martian meteorite NWA 7034 has one order of magnitude more water than most other Martian meteorites. It is similar to the basalts studied by rover missions, and it was formed in the early Amazonian epoch.
A variety of lake basins have been discovered on Mars. Some are comparable in size to the largest lakes on Earth, such as the Caspian Sea, Black Sea, and Lake Baikal. Lakes that were fed by valley networks are found in the southern highlands. There are places that are closed depressions with river valleys leading into them. These areas are thought to have once contained lakes; one is in Terra Sirenum that had its overflow move through Ma'adim Vallis into Gusev Crater, explored by the Mars Exploration Rover Spirit. Another is near Parana Valles and Loire Vallis. Some lakes are thought to have formed by precipitation, while others were formed from groundwater. Lakes are estimated to have existed in the Argyre basin, the Hellas basin, and maybe in Valles Marineris. It is likely that at times in the Noachian, many craters hosted lakes. These lakes are consistent with a cold, dry (by Earth standards) hydrological environment somewhat like that of the Great Basin of the western USA during the Last Glacial Maximum.
Research from 2010 suggests that Mars also had lakes along parts of the equator. Although earlier research had shown that Mars had a warm and wet early history that has long since dried up, these lakes existed in the Hesperian Epoch, a much later period. Using detailed images from NASA's Mars Reconnaissance Orbiter, the researchers speculate that there may have been increased volcanic activity, meteorite impacts or shifts in Mars' orbit during this period to warm Mars' atmosphere enough to melt the abundant ice present in the ground. Volcanoes may have released gases that thickened the atmosphere for a temporary period, trapping more sunlight and making it warm enough for liquid water to exist. In this study, channels were discovered that connected lake basins near Ares Vallis. When one lake filled up, its waters overflowed the banks and carved the channels to a lower area where another lake would form. These dry lakes would be targets to look for evidence (biosignatures) of past life.
In February 2019, European scientists published geological evidence of an ancient planet-wide groundwater system that was, arguably, connected to a putative vast ocean.
A study in June 2010 concluded that the more ancient ocean would have covered 36% of Mars. Data from the Mars Orbiter Laser Altimeter (MOLA), which measures the altitude of all terrain on Mars, was used in 1999 to determine that the watershed for such an ocean would have covered about 75% of the planet. Early Mars would have required a warmer climate and denser atmosphere to allow liquid water to exist at the surface. In addition, the large number of valley networks strongly supports the possibility of a hydrological cycle on the planet in the past.
The existence of a primordial Martian ocean remains controversial among scientists, and the interpretations of some features as 'ancient shorelines' has been challenged. One problem with the conjectured 2-billion-year-old (2 Ga) shoreline is that it is not flat—i.e., does not follow a line of constant gravitational potential. This could be due to a change in distribution in Mars' mass, perhaps due to volcanic eruption or meteor impact; the Elysium volcanic province or the massive Utopia basin that is buried beneath the northern plains have been put forward as the most likely causes.
In March 2015, scientists stated that evidence exists for an ancient Martian ocean, likely in the planet's northern hemisphere and about the size of Earth's Arctic Ocean, or approximately 19% of the Martian surface. This finding was derived from the ratio of water and deuterium in the modern Martian atmosphere compared to the ratio found on Earth. Eight times as much deuterium was found at Mars than exists on Earth, suggesting that ancient Mars had significantly higher levels of water. Results from the Curiosity rover had previously found a high ratio of deuterium in Gale Crater, though not significantly high enough to suggest the presence of an ocean. Other scientists caution that this new study has not been confirmed, and point out that Martian climate models have not yet shown that the planet was warm enough in the past to support bodies of liquid water.
Additional evidence for a northern ocean was published in May 2016, describing how some of the surface in Ismenius Lacus quadrangle was altered by two tsunamis. The tsunamis were caused by asteroids striking the ocean. Both were thought to have been strong enough to create 30 km diameter craters. The first tsunami picked up and carried boulders the size of cars or small houses. The backwash from the wave formed channels by rearranging the boulders. The second came in when the ocean was 300 m lower. The second carried a great deal of ice which was dropped in valleys. Calculations show that the average height of the waves would have been 50 m, but the heights would vary from 10 m to 120 m. Numerical simulations show that in this particular part of the ocean two impact craters of the size of 30 km in diameter would form every 30 million years. The implication here is that a great northern ocean may have existed for millions of years. One argument against an ocean has been the lack of shoreline features. These features may have been washed away by these tsunami events. The parts of Mars studied in this research are Chryse Planitia and northwestern Arabia Terra. These tsunamis affected some surfaces in the Ismenius Lacus quadrangle and in the Mare Acidalium quadrangle.
In January 2022, a study about the climate 3 Gy ago on Mars shows that an ocean is stable with a water cycle that is closed. They estimate a return water flow, in form of ice in glacier, from the icy highlands to the ocean is in magnitude less than the Earth at the last glacial maximum. This simulation includes for the first time a circulatin of the ocean. They demonstrate that the ocean's circulation prevent the ocean to freeze. These also shows that simulations are in agreement with observed geomorphological features identified as ancient glacial valleys.
Evidence for solid, liquid, and gaseous forms of water has been found on Mars. Water ice likely exists in the polar ice caps, glaciers, surface ice, subsurface ice, in clouds and as snow precipitation. Water vapor has been detected in small amounts in the atmosphere. Controversial evidence suggests that liquid water may exist on Mars transiently in very small amounts on the surface, and some evidence suggests that large amounts of liquid water may exist under glaciers and far beneath the surface.
Under conditions typical of the surface of Mars (water vapor pressure <1 Pa and ambient atmospheric pressure ~700 Pa ), warming water ice on the Martian surface would sublime (transform into water vapor) at rates of up to 4 meters per year.
It is widely accepted that Mars had abundant water early in its history. A fraction of this water is retained on modern Mars as both ice and locked into the structure of abundant water-rich materials, including clay minerals (phyllosilicates) and sulfates. Studies of hydrogen isotopic ratios indicate that when Mars was forming billions of years ago, asteroids and comets from beyond 2.5 astronomical units (AU) provided water to Mars. The volume of water provided in this way is thought to be equivalent to 6% to 27% of the Earth's present ocean.
The Mars Odyssey neutron spectrometer observations indicate that if all the ice in the top meter of the Martian surface were spread evenly, it would give a Water Equivalent Global layer (WEG) of at least ≈14 centimetres (5.5 in)—in other words, the globally averaged Martian surface is approximately 14% water. The water ice currently locked in both Martian poles corresponds to a WEG of 30 metres (98 ft), and geomorphic evidence favors significantly larger quantities of surface water over geologic history, with WEG as deep as 500 metres (1,600 ft). It is thought that part of this past water has been lost to the deep subsurface, and part to space, although the detailed mass balance of these processes remains poorly understood. The current atmospheric reservoir of water is important as a conduit allowing gradual migration of ice from one part of the surface to another on both seasonal and longer timescales, but it is insignificant in volume, with a WEG of no more than 10 micrometres (0.00039 in).
It is possible that liquid water could also exist on the surface of Mars through the formation of brines suggested by the abundance of hydrated salts. Brines are significant on Mars because they can stabilize liquid water at lower temperatures than pure water on its own. Pure liquid water is unstable on the surface of the planet, as it is subjected to freezing, evaporation, and boiling. Similar to how salt is applied to roads on Earth to prevent them from icing over, briny mixtures of water and salt on Mars may have low enough freezing points to lead to stable liquid at the surface. Given the complex nature of the Martian regolith, mixtures of salts are known to change the stability of brines. Modeling the deliquescence of salt mixtures can be used to test for brine stability and can help us determine if liquid brines are present on the surface of Mars. The composition of the Martian regolith, determined by the Phoenix lander, can be used to constrain these models and give an accurate representation of how brines may actually form on the planet. Results of these models give water activity values for various salts at different temperatures, where the lower the water activity, the more stable the brine. At temperatures between 208 K and 253 K, chlorate salts exhibit the lowest water activity values, and below 208 K chloride salts exhibit the lowest values. Results of modeling show that the aforementioned complex mixtures of salts do not significantly increase the stability of brines, indicating that brines may not be a significant source of liquid water at the surface of Mars.
Based on data from the InSight lander, scientists suggested liquid water exists deep underground. According to a paper published April 25, 2025 in the journal National Science Review, recordings of seismic waves from deep within the Red Planet indicate that a layer of liquid water may be in the Martian rocks between 3.4 and 5 miles [5.4 to 8 kilometers] below the surface.
The total volume of hidden water could flood the whole of Mars' surface with an ocean 1,700 to 2,560 feet [520 to 780 metres] deep, around the same volume of liquid that is contained within Antarctica's ice sheet, the study authors estimate.
. Another group earilier found similar results and suggested the water would be in fractures in igneous rocks.Liquid water in the Martian mid-crust
An even larger ice sheet on south polar region sheet is suspected to have retreated in ancient times (Hesperian period), that may have contained 20 million km3 of water ice, which is equivalent to a layer 137 m deep over the entire planet.
Both polar caps reveal abundant internal layers of ice and dust when examined with images of the spiral-shaped troughs that cut through their volume, and the subsurface radar measurements showed that these layers extend continuously across the ice sheets. This layering contains a record of past climates on Mars, just how Earth's ice sheets have a record for Earth's climate. Reading this record is not straightforward however, so, many researchers have studied this layering not only to understand the structure, history, and flow properties of the caps, but also to understand the evolution of climate on Mars.
Surrounding the polar caps are many smaller ice sheets inside craters, some of which lie under thick deposits of sand or martian dust. Particularly, the 81.4 kilometres (50.6 mi) wide Korolev Crater, is estimated to contain approximately 2,200 cubic kilometres (530 cu mi) of water ice exposed to the surface. Korolev's floor lies about 2 kilometres (1.2 mi) below the rim, and is covered by a 1.8 kilometres (1.1 mi) deep central mound of permanent water ice, up to 60 kilometres (37 mi) in diameter.
The potential existence of subglacial lakes on Mars was hypothesised when modelling of Lake Vostok in Antarctica showed that this lake could have existed before the Antarctic glaciation, and that a similar scenario could potentially have occurred on Mars. In July 2018, scientists from the Italian Space Agency reported the detection of such a potential subglacial lake on Mars, 1.5 kilometres (1 mi) below the southern polar ice cap, and spanning 20 kilometres (10 mi) horizontally, the first evidence for a potential stable body of liquid water on the planet. The evidence for this potential Martian lake was deduced from a bright spot in the radar echo sounding data of the MARSIS radar on board the European Mars Express orbiter, collected between May 2012 and December 2015. The potential lake is centred at 193°E, 81°S, a flat area that does not exhibit any peculiar topographic characteristics but is surrounded by higher ground, except on its eastern side where there is a depression. The SHARAD radar on board NASA's Mars Reconnaissance Orbiter has seen no sign of the lake.
On 28 September 2020, the MARSIS discovery was supported, using new data, and reanalysing all the data with a new technique. These new radar studies report three more potential subglacial lakes on Mars. All are 1.5 km (0.93 mi) below the southern polar ice cap. The size of the first potential lake found, and the largest, has been corrected to 30 km (19 mi) wide. It is surrounded by 3 smaller potential lakes, each a few kilometres wide.
Because the temperature at the base of the polar cap is estimated to be 205 K (−68 °C; −91 °F), scientists assume that water could remain liquid through the antifreeze effect of magnesium and calcium perchlorates. The 1.5-kilometre (0.93 mi) ice layer covering the potential lake is composed of water ice with 10 to 20% admixed dust, and seasonally covered by a 1-metre-thick (3 ft 3 in) layer of CO2 ice. Since the raw-data coverage of the south polar ice cap is limited, the discoverers stated that "there is no reason to conclude that the presence of subsurface water on Mars is limited to a single location."
In 2019, a study was published that explored the physical conditions necessary for such a lake to exist. The study calculated the amount of geothermal heat necessary to reach temperatures under which a liquid water and perchlorate mix would be stable under the ice. The authors concluded that "even if there are local concentrations of large amounts of perchlorate salts at the base of the south polar ice, typical Martian conditions are too cold to melt the ice ... a local heat source within the crust is needed to increase the temperatures, and a magma chamber within 10 km of the ice could provide such a heat source. This result suggests that if the liquid water interpretation of the observations is correct, magmatism on Mars may have been active extremely recently."
China's Zhurong rover that studied Utopia Planitia region of Mars found a shift in sand dunes at around the same time as layers in the North polar region changed. Researchers believe that the tilt of Mars changed at that time and produced changes in the winds at Zhurong's landing site and in the layers in the ice cap.
If a liquid lake does indeed exist, its salty water may also be mixed with soil to form a sludge. The lake's high levels of salt would present difficulties for most lifeforms. On Earth, organisms called halophiles exist that thrive in extremely salty conditions, though not in dark, cold, concentrated perchlorate solutions. Nevertheless, halotolerant organisms might be able to cope with enhanced perchlorate concentrations by drawing on physiological adaptations similar to those observed in the yeast Debaryomyces hansenii exposed in lab experiments to increasing NaClO4 concentrations.
For many years, various scientists have suggested that some Martian surfaces look like periglacial regions on Earth. By analogy with these terrestrial features, it has been argued for many years that these may be regions of permafrost. This would suggest that frozen water lies right beneath the surface. A common feature in the higher latitudes, patterned ground, can occur in a number of shapes, including stripes and polygons. On the Earth, these shapes are caused by the freezing and thawing of soil. There are other types of evidence for large amounts of frozen water under the surface of Mars, such as terrain softening, which rounds sharp topographical features. Evidence from Mars Odyssey's gamma ray spectrometer and direct measurements with the Phoenix lander have corroborated that many of these features are intimately associated with the presence of ground ice.
On November 22, 2016, NASA reported finding a large amount of underground ice in the Utopia Planitia region of Mars. The volume of water detected has been estimated to be equivalent to the volume of water in Lake Superior.
The volume of water ice in the region were based on measurements from the ground-penetrating radar instrument on Mars Reconnaissance Orbiter, called SHARAD. From the data obtained from SHARAD, “dielectric permittivity”, or the dielectric constant was determined. The dielectric constant value was consistent with a large concentration of water ice.
As more and more of the surface of Mars has been imaged by the modern generation of orbiters, it has become gradually more apparent that there are probably many more patches of ice scattered across the Martian surface. Many of these putative patches of ice are concentrated in the Martian mid-latitudes (≈30–60° N/S of the equator). For example, many scientists think that the widespread features in those latitude bands variously described as "latitude dependent mantle" or "pasted-on terrain" consist of dust- or debris-covered ice patches, which are slowly degrading. A cover of debris is required both to explain the dull surfaces seen in the images that do not reflect like ice, and also to allow the patches to exist for an extended period of time without subliming away completely. These patches have been suggested as possible water sources for some of the enigmatic channelized flow features like gullies also seen in those latitudes.
Many large areas of Mars either appear to host glaciers, or carry evidence that they used to be present. Much of the areas in high latitudes, especially the Ismenius Lacus quadrangle, are suspected to still contain enormous amounts of water ice. Recent evidence has led many planetary scientists to conclude that water ice still exists as glaciers across much of the Martian mid- and high latitudes, protected from sublimation by thin coverings of insulating rock and/or dust. An example of this are the glacier-like features called lobate debris aprons in an area called Deuteronilus Mensae, which display widespread evidence of ice lying beneath a few meters of rock debris. Glaciers are associated with fretted terrain, and many volcanoes. Researchers have described glacial deposits on Hecates Tholus, Arsia Mons, Pavonis Mons, and Olympus Mons. Glaciers have also been reported in a number of larger Martian craters in the mid-latitudes and above.
Glacier-like features on Mars are known variously as viscous flow features, Martian flow features, lobate debris aprons, or lineated valley fill, depending on the form of the feature, its location, the landforms it is associated with, and the author describing it. Many, but not all, small glaciers seem to be associated with gullies on the walls of craters and mantling material. The lineated deposits known as lineated valley fill are probably rock-covered glaciers that are found on the floors of most channels within the fretted terrain found around Arabia Terra in the northern hemisphere. Their surfaces have ridged and grooved materials that deflect around obstacles. Lineated floor deposits may be related to lobate debris aprons, which have been proven to contain large amounts of ice by orbiting radar. For many years, researchers interpreted that features called 'lobate debris aprons' were glacial flows and it was thought that ice existed under a layer of insulating rocks. With new instrument readings, it has been confirmed that lobate debris aprons contain almost pure ice that is covered with a layer of rocks.
Moving ice carries rock material, then drops it as the ice disappears. This typically happens at the snout or edges of the glacier. On Earth, such features would be called moraines, but on Mars they are typically known as moraine-like ridges, concentric ridges, or arcuate ridges. Since ice tends to sublime rather than melt on Mars, and because Mars's low temperatures tend to make glaciers "cold based" (frozen down to their beds, and unable to slide), the remains of these glaciers and the ridges they leave do not appear the exactly same as normal glaciers on Earth. In particular, Martian moraines tend to be deposited without being deflected by the underlying topography, which is thought to reflect the fact that the ice in Martian glaciers is normally frozen down and cannot slide. Ridges of debris on the surface of the glaciers indicate the direction of ice movement. The surface of some glaciers have rough textures due to sublimation of buried ice. The ice evaporates without melting and leaves behind an empty space. Overlying material then collapses into the void. Sometimes chunks of ice fall from the glacier and get buried in the land surface. When they melt, a more or less round hole remains. Many of these "kettle holes" have been identified on Mars.
Despite strong evidence for glacial flow on Mars, there is little convincing evidence for landforms carved by glacial erosion, e.g., U-shaped valleys, crag and tail hills, arêtes, drumlins. Such features are abundant in glaciated regions on Earth, so their absence on Mars has proven puzzling. The lack of these landforms is thought to be related to the cold-based nature of the ice in most recent glaciers on Mars. Because the solar insolation reaching the planet, the temperature and density of the atmosphere, and the geothermal heat flux are all lower on Mars than they are on Earth, modelling suggests the temperature of the interface between a glacier and its bed stays below freezing and the ice is literally frozen down to the ground. This prevents it from sliding across the bed, which is thought to inhibit the ice's ability to erode the surface.
In August 2024, researchers reported on a new analysis of seismometer readings suggesting the presence of liquid water, trapped in tiny cracks and pores of rock, deep in the rocky outer crust, at a depth of six to 12 miles (10 to 20km) below the surface. The data came from NASA's Mars Insight Lander, which recorded four years' of vibrations - Mars quakes - from deep inside the planet.
The research only analyzed the portion of Mars directly below the InSight lander. However, the researchers speculated that if their findings are representative of the rest of Mars, there would be enough water to fill oceans on the planet’s surface, covering the entirety of Mars to a depth of 1 mile (1.6 kilometers).
A study from 2021 estimated that, based on observed ratios of deuterium to hydrogen on Mars, between 30 and 99 percent of the water on Mars may be trapped in the crust, mostly in the form of hydrated minerals.
Pure liquid water cannot exist in a stable form on the surface of Mars with its present low atmospheric pressure and low temperature because it would boil, except at the lowest elevations for a few hours. So, a geological mystery commenced in 2006 when observations from NASA's Mars Reconnaissance Orbiter revealed gully deposits that were not there ten years prior, possibly caused by flowing liquid brine during the warmest months on Mars. The images were of two craters in Terra Sirenum and Centauri Montes that appear to show the presence of flows (wet or dry) on Mars at some point between 1999 and 2001.
There is disagreement in the scientific community as to whether or not gullies are formed by liquid water. While some scientists believe that most gullies are formed by liquid water formed from snow or ice melting, other scientists believe that gullies are formed by dry flows possibly lubricated by sublimating carbon dioxide that forms from freezing of the martian atmosphere.
Some studies attest that gullies forming in the southern highlands could not be formed by water due to improper conditions. The low pressure, non-geothermal, colder regions would not give way to liquid water at any point in the year but would be ideal for solid carbon dioxide. The carbon dioxide melting in the warmer summer would yield liquid carbon dioxide which would then form the gullies. Even if gullies are carved by flowing water at the surface, the exact source of the water and the mechanisms behind its motion are not understood.
In August 2011, NASA announced the discovery of current seasonal changes on steep slopes below rocky outcrops near crater rims in the Southern hemisphere. These dark streaks, now called recurrent slope lineae (RSL), were seen to grow downslope during the warmest part of the Martian Summer, then to gradually fade through the rest of the year, recurring cyclically between years. The researchers suggested these marks were consistent with salty water (brines) flowing downslope and then evaporating, possibly leaving some sort of residue. The CRISM spectroscopic instrument has since made direct observations of hydrous salts appearing at the same time that these recurrent slope lineae form, confirming in 2015 that these lineae are produced by the flow of liquid brines through shallow soils. The lineae contain hydrated chlorate and perchlorate salts (ClO4−), which contain liquid water molecules. The lineae flow downhill in Martian summer, when the temperature is above −23 °C (−9 °F; 250 K). However, the source of the water remains unknown. However, neutron spectrometer data by the Mars Odyssey orbiter obtained over one decade, was published in December 2017, and shows no evidence of water (hydrogenated regolith) at the active sites, so its authors also support the hypotheses of either short-lived atmospheric water vapour deliquescence, or dry granular flows. They conclude that liquid water on today's Mars may be limited to traces of dissolved moisture from the atmosphere and thin films, which are challenging environments for life as it is currently known.
An alternative scenario is a Knudsen pump effect, from photophoretic when shadows occurs in a granular material. The authors demonstrated that the RSLs stopped at an angle of 28° in Garni crater, in agreement with dry granular avalanche. In addition, the authors pointed out several limitations of the wet hypothesis, such as the fact that the detection of water was only indirect (salt detection but not water).
Precipitation, most likely consisting of snow made of water ice, was observed to fall from cirrus clouds by the Phoenix lander.
The variation in Mars's surface water content is strongly coupled to the evolution of its atmosphere and may have been marked by several key stages. Head and others put together a detailed history of water on Mars and presented it in March, 2023. In March 2021, researchers reported findings, based on ratios of deuterium to hydrogen, suggesting that a considerable amount of water has likely been sequestered into the rocks and crust of the planet over the years instead of being lost to space.
The early Noachian era was characterized by atmospheric loss to space from heavy meteoritic bombardment and hydrodynamic escape. Ejection by meteorites may have removed ~60% of the early atmosphere. Significant quantities of phyllosilicates may have formed during this period requiring a sufficiently dense atmosphere to sustain surface water, as the spectrally dominant phyllosilicate group, smectite, suggests moderate water-to-rock ratios. However, the pH-pCO2 between smectite and carbonate show that the precipitation of smectite would constrain pCO2 to a value not more than 1×10−2 atm (1.0 kPa). As a result, the dominant component of a dense atmosphere on early Mars becomes uncertain, if the clays formed in contact with the Martian atmosphere, particularly given the lack of evidence for carbonate deposits. An additional complication is that the ~25% lower brightness of the young Sun would have required an ancient atmosphere with a significant greenhouse effect to raise surface temperatures to sustain liquid water. Higher CO2 content alone would have been insufficient, as CO2 precipitates at partial pressures exceeding 1.5 atm (1,500 hPa), reducing its effectiveness as a greenhouse gas.
Atmospheric enhancement by sporadic outgassing events were countered by solar wind stripping of the atmosphere, albeit less intensely than by the young Sun. Catastrophic floods date to this period, favoring sudden subterranean release of volatiles, as opposed to sustained surface flows. While the earlier portion of this era may have been marked by aqueous acidic environments and Tharsis-centric groundwater discharge dating to the late Noachian, much of the surface alteration processes during the latter portion is marked by oxidative processes including the formation of Fe3+ oxides that impart a reddish hue to the Martian surface. Such oxidation of primary mineral phases can be achieved by low-pH (and possibly high temperature) processes related to the formation of palagonitic tephra, by the action of H2O2 that forms photochemically in the Martian atmosphere, and by the action of water, none of which require free O2. The action of H2O2 may have dominated temporally given the drastic reduction in aqueous and igneous activity in this recent era, making the observed Fe3+ oxides volumetrically small, though pervasive and spectrally dominant. Nevertheless, aquifers may have driven sustained, but highly localized surface water in recent geologic history, as evident in the geomorphology of craters such as Mojave. Furthermore, the Lafayette Martian meteorite shows evidence of aqueous alteration as recently as 650 Ma.
In 2020 scientists reported that Mars' current loss of atomic hydrogen from water is largely driven by seasonal processes and dust storms that transport water directly to the upper atmosphere and that this has influenced the planet's climate likely during the last 1 Ga. More recent studies have suggested that upward propagating atmospheric gravity waves can play an important role during global dust storms in modulating water escape.
Mars has experienced about 40 large scale changes in the amount and distribution of ice on its surface over the past five million years, with the most recent happening about 2.1 to 0.4 Myr ago, during the Late Amazonian glaciation at the dichotomy boundary. These changes are known as ice ages. Ice ages on Mars are very different from the ones that the Earth experiences. Ice ages are driven by changes in Mars's orbit and tilt —also known as obliquity. Orbital calculations show that Mars wobbles on its axis far more than Earth does. The Earth is stabilized by its proportionally large moon, so it only wobbles a few degrees. Mars may change its tilt by many tens of degrees. When this obliquity is high, its poles get much more direct sunlight and heat; this causes the ice caps to warm and become smaller as ice sublimes. Adding to the variability of the climate, the eccentricity of the orbit of Mars changes twice as much as Earth's eccentricity. As the poles sublime, the ice is redeposited closer to the equator, which receive somewhat less solar insolation at these high obliquities. Computer simulations have shown that a 45° tilt of the Martian axis would result in ice accumulation in areas that display glacial landforms.
The moisture from the ice caps travels to lower latitudes in the form of deposits of frost or snow mixed with dust. The atmosphere of Mars contains a great deal of fine dust particles, the water vapor condenses on these particles that then fall down to the ground due to the additional weight of the water coating. When ice at the top of the mantling layer returns to the atmosphere, it leaves behind dust that serves to insulate the remaining ice. The total volume of water removed is a few percent of the ice caps, or enough to cover the entire surface of the planet under one meter of water. Much of this moisture from the ice caps results in a thick smooth mantle with a mixture of ice and dust. This ice-rich mantle, that can be 100 meters thick at mid-latitudes, smoothes the land at lower latitudes, but in places it displays a bumpy texture or patterns that give away the presence of former water ice underneath.
By discovering many geological forms that are typically formed from large amounts of water, the two Viking orbiters and the two landers (1976-1982) caused a revolution in our knowledge about water on Mars. Huge outflow channels were found in many areas. They showed that floods of water broke through dams, carved deep valleys, eroded grooves into bedrock, and traveled thousands of kilometers. Large areas in the southern hemisphere contained branched valley networks, suggesting that rain once fell. Many craters look as if the impactor fell into mud. When they were formed, ice in the soil may have melted, turned the ground into mud, then the mud flowed across the surface. Regions, called "Chaotic Terrain," seemed to have quickly lost great volumes of water that caused large channels to form downstream. Estimates for some channel flows run to ten thousand times the flow of the Mississippi River. Underground volcanism may have melted frozen ice; the water then flowed away and the ground collapsed to leave chaotic terrain. Also, general chemical analysis by the two Viking landers suggested the surface has been either exposed to or submerged in water in the past.
In 1998, data from the Mars Orbiter Laser Altimeter of the Mars Global Surveyor orbiter showed that the topography of the northern polar ice cap was consistent with a composition of primarily water ice.
The atmospheric pressure measured by the Pathfinder on Mars is very low —about 0.6% of Earth's, and it would not permit pure liquid water to exist on the surface.
Other observations were consistent with water being present in the past. Some of the rocks at the Mars Pathfinder site leaned against each other in a manner geologists term imbricated. It is suspected that strong flood waters in the past pushed the rocks around until they faced away from the flow. Some pebbles were rounded, perhaps from being tumbled in a stream. Parts of the ground are crusty, maybe due to cementing by a fluid containing minerals. There was evidence of clouds and maybe fog.
For about as far as the camera can see, the landing site is flat, but shaped into polygons between 2–3 metres (6 ft 7 in – 9 ft 10 in) in diameter which are bounded by troughs that are 20–50 centimetres (7.9–19.7 in) deep. These shapes are due to ice in the soil expanding and contracting due to major temperature changes. The microscope showed that the soil on top of the polygons is composed of rounded particles and flat particles, probably a type of clay. Ice is present a few inches below the surface in the middle of the polygons, and along its edges, the ice is at least 8 inches (200 mm) deep.
Snow was observed to fall from cirrus clouds. The clouds formed at a level in the atmosphere that was around −65 °C (−85 °F; 208 K), so the clouds would have to be composed of water-ice, rather than carbon dioxide-ice (CO2 or dry ice), because the temperature for forming carbon dioxide ice is much lower than −120 °C (−184 °F; 153 K). As a result of mission observations, it is now suspected that water ice (snow) would have accumulated later in the year at this location. The highest temperature measured during the mission, which took place during the Martian summer, was −19.6 °C (−3.3 °F; 253.6 K), while the coldest was −97.7 °C (−143.9 °F; 175.5 K). So, in this region the temperature remained far below the freezing point (0 °C (32 °F; 273 K)) of water.
The MER rovers found evidence for ancient wet environments that were very acidic. In fact, what Opportunity found evidence of sulfuric acid, a harsh chemical for life. But on May 17, 2013, NASA announced that Opportunity found clay deposits that typically form in wet environments that are near neutral acidity. This find provides additional evidence about a wet ancient environment possibly favorable for life.
Rocks on Mars have been found to frequently occur as layers, called strata, in many different places. Layers form by various ways, including volcanoes, wind, or water. Light-toned rocks on Mars have been associated with hydrated minerals like sulfates and clay.
The orbiter helped scientists determine that much of the surface of Mars is covered by a thick smooth mantle that is thought to be a mixture of ice and dust.
The ice mantle under the shallow subsurface is thought to result from frequent, major climate changes. Changes in Mars' orbit and tilt cause significant changes in the distribution of water ice from polar regions down to latitudes equivalent to Texas. During certain climate periods water vapor leaves polar ice and enters the atmosphere. The water returns to the ground at lower latitudes as deposits of frost or snow mixed generously with dust. The atmosphere of Mars contains a great deal of fine dust particles. Water vapor condenses on the particles, then they fall down to the ground due to the additional weight of the water coating. When ice at the top of the mantling layer goes back into the atmosphere, it leaves behind dust, which insulates the remaining ice.
In 2008, research with the Shallow Radar on the Mars Reconnaissance Orbiter provided strong evidence that the lobate debris aprons (LDA) in Hellas Planitia and in mid northern latitudes are glaciers that are covered with a thin layer of rocks. Its radar also detected a strong reflection from the top and base of LDAs, meaning that pure water ice made up the bulk of the formation. The discovery of water ice in LDAs demonstrates that water is found at even lower latitudes.
Research published in September 2009, demonstrated that some new craters on Mars show exposed, pure water ice. After a time, the ice disappears, evaporating into the atmosphere. The ice is only a few feet deep. The ice was confirmed with the Compact Imaging Spectrometer (CRISM) on board the Mars Reconnaissance Orbiter. Similar exposures of ice have been detected within the mid-latitude mantle (originally proposed to contain buried dusty snow covered with dust and regolith;) that drapes most pole-facing slopes in the mid-latitudes using spectral analysis of HiRISE images.
Additional collaborating reports published in 2019 evaluated the amount of water ice located at the northern pole. One report used data from the MRO's SHARAD (SHAllow RADar sounder) probes. SHARAD has the capability scanning up to about 2 kilometres (1.2 miles) below the surface at 15 metres (49 ft) intervals. The analysis of past SHARAD runs showed evidence of strata of water ice and sand below the Planum Boreum, with as much as 60% to 88% of the volume being water ice. This supports the theory of the long-term global weather of Mars consisting of cycles of global warming and cooling; during cooling periods, water gathered at the poles to form the ice layers, and then as global warming occurred, the unthawed water ice was covered by dust and dirt from Mars' frequent dust storms. The total ice volume determine by this study indicated that there was approximately 2.2×105 cubic kilometres (5.3×104 cu mi), or enough water, if melted, to fully cover the Mars surface with a 1.5 metres (4.9 ft) layer of water. The work was corroborated by a separate study that used recorded gravity data to estimate the density of the Planum Boreum, indicating that on average, it contained up to 55% by volume of water ice.
On December 16, 2014, NASA reported detecting an unusual increase, then decrease, in the amounts of methane in the atmosphere near the rover; also, based on deuterium to hydrogen ratio studies, in 3 billion year old clays, much of the water at Gale Crater on Mars was found to have been lost during ancient times, before the lake bed in the crater was formed; afterwards, large amounts of water continued to be lost.
Zhurong found evidence of water when it examined the crust at the surface, called "duricrust." The crust
contained hydrated sulfate/silica materials in the Amazonian-age terrain of the landing site. The duricrust may have been produced either by subsurface ice melting or groundwater rising.
Looking at the dunes at Zhurong's landing site, researchers found a large shift in wind direction (as evidenced in the dune directions) that occurred about the same time that layers in the Martian northern ice caps changed. It was suggested that these events happened when the rotational tilt of the planet changed.
Ojha, L.; Wilhelm, M. B.; Murchie, S. L.; McEwen, A. S.; Wray, J. J.; Hanley, J.; Massé, M.; Chojnacki, M. (2015). "Spectral evidence for hydrated salts in recurring slope lineae on Mars". Nature Geoscience. 8 (11): 829–832. Bibcode:2015NatGe...8..829O. doi:10.1038/ngeo2546. S2CID 59152931. /wiki/Bibcode_(identifier)
Webster, Guy; Brown, Dwayne (December 10, 2013). "NASA Mars Spacecraft Reveals a More Dynamic Red Planet". NASA. Archived from the original on December 14, 2013. Retrieved December 11, 2013. https://www.jpl.nasa.gov/news/news.php?release=2013-361&1#1
"Liquid Water From Ice and Salt on Mars". Geophysical Research Letters. NASA Astrobiology. July 3, 2014. Archived from the original on August 14, 2014. Retrieved August 13, 2014. https://web.archive.org/web/20140814092915/http://astrobiology.nasa.gov/articles/2014/7/3/liquid-water-from-ice-and-salt-on-mars/
Jakosky, B. M.; Haberle, R.M. (1992). "The Seasonal Behavior of Water on Mars". In Kieffer, H. H.; et al. (eds.). Mars. Tucson, Arizona: University of Arizona Press. pp. 969–1016.
Christensen, P. R. (2006). "Water at the Poles and in Permafrost Regions of Mars". Elements. 3 (2): 151–155. Bibcode:2006Eleme...2..151C. doi:10.2113/gselements.2.3.151. /wiki/Bibcode_(identifier)
Carr, 2006, p. 173.
Chryse Planitia
Byrne, Shane; Dundas, Colin M.; Kennedy, Megan R.; Mellon, Michael T.; McEwen, Alfred S.; Cull, Selby C.; Daubar, Ingrid J.; Shean, David E.; Seelos, Kimberly D.; Murchie, Scott L.; Cantor, Bruce A.; Arvidson, Raymond E.; Edgett, Kenneth S.; Reufer, Andreas; Thomas, Nicolas (September 25, 2009). "Distribution of Mid-Latitude Ground Ice on Mars from New Impact Craters". Science. 325 (5948): 1674–1676. Bibcode:2009Sci...325.1674B. doi:10.1126/science.1175307. ISSN 0036-8075. PMID 19779195. S2CID 10657508. Archived from the original on July 14, 2023. Retrieved July 14, 2023. https://www.science.org/doi/10.1126/science.1175307
Dundas, Colin M.; Bramson, Ali M.; Ojha, Lujendra; Wray, James J.; Mellon, Michael T.; Byrne, Shane; McEwen, Alfred S.; Putzig, Nathaniel E.; Viola, Donna; Sutton, Sarah; Clark, Erin; Holt, John W. (January 12, 2018). "Exposed subsurface ice sheets in the Martian mid-latitudes". Science. 359 (6372): 199–201. Bibcode:2018Sci...359..199D. doi:10.1126/science.aao1619. ISSN 0036-8075. PMID 29326269. S2CID 206662378. https://doi.org/10.1126%2Fscience.aao1619
Khuller, Aditya; Christensen, Philip (January 18, 2021). "Evidence of Exposed Dusty Water Ice within Martian Gullies". Journal of Geophysical Research: Planets. 126 (2). Bibcode:2021JGRE..12606539R. doi:10.1029/2020JE006539. ISSN 2169-9097. S2CID 234174382. Archived from the original on June 11, 2024. Retrieved July 27, 2022. https://onlinelibrary.wiley.com/doi/10.1029/2020JE006539
Carr, M. H. (1996). Water on Mars. New York: Oxford University Press. p. 197.
Soderblom, L. A. (1992). Kieffer, H. H.; et al. (eds.). The composition and mineralogy of the Martian surface from spectroscopic observations – 0.3 micron to 50 microns. Tucson, Arizona: University of Arizona Press. pp. 557–593. ISBN 978-0-8165-1257-7. 978-0-8165-1257-7
Glotch, T.; Christensen, P. (2005). "Geologic and mineralogical mapping of Aram Chaos: Evidence for water-rich history". Journal of Geophysical Research. 110 (E9): E09006. Bibcode:2005JGRE..110.9006G. doi:10.1029/2004JE002389. S2CID 53489327. https://doi.org/10.1029%2F2004JE002389
Holt, J. W.; Safaeinili, A.; Plaut, J. J.; Young, D. A.; Head, J. W.; Phillips, R. J.; Campbell, B. A.; Carter, L. M.; Gim, Y.; Seu, R.; Team, Sharad (2008). "Radar Sounding Evidence for Ice within Lobate Debris Aprons near Hellas Basin, Mid-Southern Latitudes of Mars" (PDF). Lunar and Planetary Science. XXXIX (1391): 2441. Bibcode:2008LPI....39.2441H. Archived (PDF) from the original on June 11, 2016. Retrieved December 19, 2010. http://www.lpi.usra.edu/meetings/lpsc2008/pdf/2441.pdf
Amos, Jonathan (June 10, 2013). "Old Opportunity Mars rover makes rock discovery". BBC News. Archived from the original on October 9, 2021. Retrieved June 22, 2018. https://www.bbc.co.uk/news/science-environment-22832673
"Mars Rover Opportunity Examines Clay Clues in Rock". Jet Propulsion Laboratory, NASA. May 17, 2013. Archived from the original on June 11, 2013. Retrieved June 16, 2013. https://www.jpl.nasa.gov/news/news.php?release=2013-167
Pollack, J. B. (1979). "Climatic Change on the Terrestrial Planets". Icarus. 37 (3): 479–553. Bibcode:1979Icar...37..479P. doi:10.1016/0019-1035(79)90012-5. /wiki/Bibcode_(identifier)
Pollack, J. B.; Kasting, J. F.; Richardson, S. M.; Poliakoff, K. (1987). "The Case for a Wet, Warm Climate on Early Mars". Icarus. 71 (2): 203–224. Bibcode:1987Icar...71..203P. doi:10.1016/0019-1035(87)90147-3. hdl:2060/19870013977. PMID 11539035. /wiki/Bibcode_(identifier)
Fairén, A. G. (2010). "A cold and wet Mars Mars". Icarus. 208 (1): 165–175. Bibcode:2010Icar..208..165F. doi:10.1016/j.icarus.2010.01.006. /wiki/Bibcode_(identifier)
Fairén, A. G.; et al. (2009). "Stability against freezing of aqueous solutions on early Mars". Nature. 459 (7245): 401–404. Bibcode:2009Natur.459..401F. doi:10.1038/nature07978. PMID 19458717. S2CID 205216655. Archived from the original on August 3, 2020. Retrieved August 29, 2020. https://zenodo.org/record/1233311
"releases/2015/03/150305140447". sciencedaily.com. Archived from the original on December 12, 2023. Retrieved May 25, 2015. https://www.sciencedaily.com/releases/2015/03/150305140447.htm
Villanueva, G.; Mumma, M.; Novak, R.; Käufl, H.; Hartogh, P.; Encrenaz, T.; Tokunaga, A.; Khayat, A.; Smith, M. (2015). "Strong water isotopic anomalies in the martian atmosphere: Probing current and ancient reservoirs". Science. 348 (6231): 218–221. Bibcode:2015Sci...348..218V. doi:10.1126/science.aaa3630. PMID 25745065. S2CID 206633960. Archived from the original on November 1, 2021. Retrieved July 23, 2019. /wiki/Th%C3%A9r%C3%A8se_Encrenaz
Baker, V. R.; Strom, R. G.; Gulick, V. C.; Kargel, J. S.; Komatsu, G.; Kale, V. S. (1991). "Ancient oceans, ice sheets and the hydrological cycle on Mars". Nature. 352 (6348): 589–594. Bibcode:1991Natur.352..589B. doi:10.1038/352589a0. S2CID 4321529. /wiki/Bibcode_(identifier)
Salese, F.; Ansan, V.; Mangold, N.; Carter, J.; Anouck, O.; Poulet, F.; Ori, G. G. (2016). "A sedimentary origin for intercrater plains north of the Hellas basin: Implications for climate conditions and erosion rates on early Mars" (PDF). Journal of Geophysical Research: Planets. 121 (11): 2239–2267. Bibcode:2016JGRE..121.2239S. doi:10.1002/2016JE005039. S2CID 132873898. Archived (PDF) from the original on March 10, 2020. Retrieved November 22, 2019. https://hal.archives-ouvertes.fr/hal-02305998/file/Salese2016_jgre20597.pdf
Parker, T. J.; Saunders, R. S.; Schneeberger, D. M. (1989). "Transitional Morphology in West Deuteronilus Mensae, Mars: Implications for Modification of the Lowland/Upland Boundary". Icarus. 82 (1): 111–145. Bibcode:1989Icar...82..111P. doi:10.1016/0019-1035(89)90027-4. S2CID 120460110. /wiki/Bibcode_(identifier)
Dohm, J. M.; Baker, Victor R.; Boynton, William V.; Fairén, Alberto G.; Ferris, Justin C.; Finch, Michael; Furfaro, Roberto; Hare, Trent M.; Janes, Daniel M.; Kargel, Jeffrey S.; Karunatillake, Suniti; Keller, John; Kerry, Kris; Kim, Kyeong J.; Komatsu, Goro; Mahaney, William C.; Schulze-Makuch, Dirk; Marinangeli, Lucia; Ori, Gian G.; Ruiz, Javier; Wheelock, Shawn J. (2009). "GRS Evidence and the Possibility of Paleooceans on Mars" (PDF). Planetary and Space Science. 57 (5–6): 664–684. Bibcode:2009P&SS...57..664D. doi:10.1016/j.pss.2008.10.008. Archived from the original (PDF) on September 22, 2017. Retrieved July 23, 2019. https://web.archive.org/web/20170922010358/http://eprints.ucm.es/10512/2/25-Marte_9_P%C3%A1gina_01.pdf
"PSRD: Ancient Floodwaters and Seas on Mars". Planetary Science Research Discoveries. University of Hawaii. July 16, 2003. Archived from the original on January 4, 2011. Retrieved December 18, 2009. http://www.psrd.hawaii.edu/July03/MartianSea.html
"Gamma-Ray Evidence Suggests Ancient Mars Had Oceans". SpaceRef. November 17, 2008. http://www.spaceref.com/news/viewpr.html?pid=26947
Clifford, S. M.; Parker, T. J. (2001). "The Evolution of the Martian Hydrosphere: Implications for the Fate of a Primordial Ocean and the Current State of the Northern Plains". Icarus. 154 (1): 40–79. Bibcode:2001Icar..154...40C. doi:10.1006/icar.2001.6671. S2CID 13694518. /wiki/Bibcode_(identifier)
Di Achille, Gaetano; Hynek, Brian M. (2010). "Ancient ocean on Mars supported by global distribution of deltas and valleys". Nature Geoscience. 3 (7): 459–463. Bibcode:2010NatGe...3..459D. doi:10.1038/ngeo891. /wiki/Bibcode_(identifier)
"Ancient ocean may have covered third of Mars". Science Daily. June 14, 2010. Archived from the original on October 9, 2021. Retrieved February 28, 2018. https://www.sciencedaily.com/releases/2010/06/100613181245.htm
Carr, 2006, pp. 144–147.
Fassett, C. I.; Dickson, James L.; Head, James W.; Levy, Joseph S.; Marchant, David R. (2010). "Supraglacial and Proglacial Valleys on Amazonian Mars". Icarus. 208 (1): 86–100. Bibcode:2010Icar..208...86F. doi:10.1016/j.icarus.2010.02.021. /wiki/Bibcode_(identifier)
"Flashback: Water on Mars Announced 10 Years Ago". Space.com. June 22, 2000. Archived from the original on December 22, 2010. Retrieved June 23, 2010. http://www.space.com/scienceastronomy/flashback-water-on-mars-announced-10-years-ago-100622.html
Chang, Kenneth (December 9, 2013). "On Mars, an Ancient Lake and Perhaps Life". The New York Times. Archived from the original on December 9, 2013. Retrieved February 26, 2017. https://www.nytimes.com/2013/12/10/science/space/on-mars-an-ancient-lake-and-perhaps-life.html
Various (December 9, 2013). "Science – Special Collection – Curiosity Rover on Mars". Science. Archived from the original on January 28, 2014. Retrieved June 30, 2022. https://www.science.org/action/doSearch?AllField=Curiosity+Mars
Parker, T.; Clifford, S. M.; Banerdt, W. B. (2000). "Argyre Planitia and the Mars Global Hydrologic Cycle" (PDF). Lunar and Planetary Science. XXXI: 2033. Bibcode:2000LPI....31.2033P. Archived (PDF) from the original on July 6, 2021. Retrieved December 19, 2010. http://www.lpi.usra.edu/meetings/lpsc2000/pdf/2033.pdf
Heisinger, H.; Head, J. (2002). "Topography and morphology of the Argyre basin, Mars: implications for its geologic and hydrologic history". Planetary and Space Science. 50 (10–11): 939–981. Bibcode:2002P&SS...50..939H. doi:10.1016/S0032-0633(02)00054-5. /wiki/Bibcode_(identifier)
"Regional, Not Global, Processes Led to Huge Martian Floods". Planetary Science Institute. September 11, 2015. Archived from the original on September 29, 2015. Retrieved September 12, 2015 – via SpaceRef. https://archive.today/20150929035120/http://spaceref.com/mars/regional-not-global-processes-led-to-huge-martian-floods.html
Harrison, K; Grimm, R. (2005). "Groundwater-controlled valley networks and the decline of surface runoff on early Mars". Journal of Geophysical Research. 110 (E12): E12S16. Bibcode:2005JGRE..11012S16H. doi:10.1029/2005JE002455. S2CID 7755332. https://doi.org/10.1029%2F2005JE002455
Howard, A.; Moore, Jeffrey M.; Irwin, Rossman P. (2005). "An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits". Journal of Geophysical Research. 110 (E12): E12S14. Bibcode:2005JGRE..11012S14H. doi:10.1029/2005JE002459. S2CID 14890033. https://doi.org/10.1029%2F2005JE002459
Salese, F.; Di Achille, G.; Neesemann, A.; Ori, G. G.; Hauber, E. (2016). "Hydrological and sedimentary analyses of well-preserved paleofluvial-paleolacustrine systems at Moa Valles, Mars". Journal of Geophysical Research: Planets. 121 (2): 194–232. Bibcode:2016JGRE..121..194S. doi:10.1002/2015JE004891. S2CID 130651090. https://doi.org/10.1002%2F2015JE004891
Irwin, Rossman P.; Howard, Alan D.; Craddock, Robert A.; Moore, Jeffrey M. (2005). "An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development". Journal of Geophysical Research. 110 (E12): E12S15. Bibcode:2005JGRE..11012S15I. doi:10.1029/2005JE002460. https://doi.org/10.1029%2F2005JE002460
Fassett, C.; Head, III (2008). "Valley network-fed, open-basin lakes on Mars: Distribution and implications for Noachian surface and subsurface hydrology". Icarus. 198 (1): 37–56. Bibcode:2008Icar..198...37F. doi:10.1016/j.icarus.2008.06.016. /wiki/Bibcode_(identifier)
Moore, J.; Wilhelms, D. (2001). "Hellas as a possible site of ancient ice-covered lakes on Mars" (PDF). Icarus. 154 (2): 258–276. Bibcode:2001Icar..154..258M. doi:10.1006/icar.2001.6736. hdl:2060/20020050249. S2CID 122991710. Archived (PDF) from the original on October 9, 2021. Retrieved July 7, 2017. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20020050249_2002081883.pdf
Weitz, C.; Parker, T. (2000). "New evidence that the Valles Marineris interior deposits formed in standing bodies of water" (PDF). Lunar and Planetary Science. XXXI: 1693. Bibcode:2000LPI....31.1693W. Archived (PDF) from the original on July 6, 2021. Retrieved December 19, 2010. http://www.lpi.usra.edu/meetings/lpsc2000/pdf/1693.pdf
"New Signs That Ancient Mars Was Wet". Space.com. October 28, 2008. Archived from the original on November 10, 2021. Retrieved October 3, 2011. http://www.space.com/6033-signs-ancient-mars-wet.html
Squyres, S. W.; et al. (1992). "Ice in the Martian Regolith". In Kieffer, H. H. (ed.). Mars. Tucson, Arizona: University of Arizona Press. pp. 523–554. ISBN 978-0-8165-1257-7. 978-0-8165-1257-7
Head, J.; Marchant, D. (2006). "Modifications of the walls of a Noachian crater in Northern Arabia Terra (24 E, 39 N) during northern mid-latitude Amazonian glacial epochs on Mars: Nature and evolution of Lobate Debris Aprons and their relationships to lineated valley fill and glacial systems (abstract)". Lunar and Planetary Science. 37: 1128.
Head, J.; et al. (2006). "Modification if the dichotomy boundary on Mars by Amazonian mid-latitude regional glaciation". Geophysical Research Letters. 33 (8): 33. Bibcode:2006GeoRL..33.8S03H. doi:10.1029/2005gl024360. S2CID 9653193. https://doi.org/10.1029%2F2005gl024360
Head, J.; Marchant, D. (2006). "Evidence for global-scale northern mid-latitude glaciation in the Amazonian period of Mars: Debris-covered glacial and valley glacial deposits in the 30–50 N latitude band". Lunar and Planetary Science. 37: 1127.
Lewis, Richard (April 23, 2008). "Glaciers Reveal Martian Climate Has Been Recently Active". Brown University. Archived from the original on October 12, 2013. Retrieved October 12, 2009. http://news.brown.edu/pressreleases/2008/04/martian-glaciers
Plaut, Jeffrey J.; Safaeinili, Ali; Holt, John W.; Phillips, Roger J.; Head, James W.; Seu, Roberto; Putzig, Nathaniel E.; Frigeri, Alessandro (2009). "Radar Evidence for Ice in Lobate Debris Aprons in the Mid-Northern Latitudes of Mars" (PDF). Geophysical Research Letters. 36 (2): n/a. Bibcode:2009GeoRL..36.2203P. doi:10.1029/2008GL036379. S2CID 17530607. Archived from the original (PDF) on January 23, 2021. Retrieved April 4, 2010. https://web.archive.org/web/20210123201616/http://www.planetary.brown.edu/pdfs/3733.pdf
Martín-Torres, F. Javier; Zorzano, María-Paz; Valentín-Serrano, Patricia; Harri, Ari-Matti; Genzer, Maria (April 13, 2015). "Transient liquid water and water activity at Gale crater on Mars". Nature Geoscience. 8 (5): 357–361. Bibcode:2015NatGe...8..357M. doi:10.1038/ngeo2412. https://resolver.sub.uni-goettingen.de/purl?gro-2/129714
Ojha, L.; Wilhelm, M. B.; Murchie, S. L.; McEwen, A. S.; Wray, J. J.; Hanley, J.; Massé, M.; Chojnacki, M. (2015). "Spectral evidence for hydrated salts in recurring slope lineae on Mars". Nature Geoscience. 8 (11): 829–832. Bibcode:2015NatGe...8..829O. doi:10.1038/ngeo2546. S2CID 59152931. /wiki/Bibcode_(identifier)
"Recurring Martian Streaks: Flowing Sand, Not Water?" Archived December 8, 2021, at the Wayback Machine NASA, November 20, 2017 https://www.nasa.gov/feature/jpl/recurring-martian-streaks-flowing-sand-not-water
Wall, Mike (March 25, 2011). "Q & A with Mars Life-Seeker Chris Carr". Space.com. Archived from the original on June 3, 2013. Retrieved June 16, 2013. http://www.space.com/11232-mars-life-evolution-carr-interview.html
Dartnell, L. R.; Desorgher; Ward; Coates (January 30, 2007). "Modelling the surface and subsurface Martian radiation environment: Implications for astrobiology". Geophysical Research Letters. 34 (2): L02207. Bibcode:2007GeoRL..34.2207D. doi:10.1029/2006GL027494. S2CID 59046908. Archived from the original on October 7, 2019. Retrieved July 23, 2019. The damaging effect of ionising radiation on cellular structure is one of the prime limiting factors on the survival of life in potential astrobiological habitats. http://discovery.ucl.ac.uk/134609/
Dartnell, L. R.; Desorgher, L.; Ward, J. M.; Coates, A. J. (2007). "Martian sub-surface ionising radiation: biosignatures and geology" (PDF). Biogeosciences. 4 (4): 545–558. Bibcode:2007BGeo....4..545D. doi:10.5194/bg-4-545-2007. Archived (PDF) from the original on July 9, 2014. Retrieved September 1, 2019. This ionising radiation field is deleterious to the survival of dormant cells or spores and the persistence of molecular biomarkers in the subsurface, and so its characterisation. ... Even at a depth of 2 meters beneath the surface, any microbes would likely be dormant, cryopreserved by the current freezing conditions, and so metabolically inactive and unable to repair cellular degradation as it occurs. http://hal.archives-ouvertes.fr/docs/00/29/76/31/PDF/bg-4-545-2007.pdf
de Morais, A. (2012). "A Possible Biochemical Model for Mars" (PDF). 43rd Lunar and Planetary Science Conference. Archived (PDF) from the original on July 6, 2021. Retrieved June 5, 2013. The extensive volcanism at that time much possibly created subsurface cracks and caves within different strata, and the liquid water could have been stored in these subterraneous places, forming large aquifers with deposits of saline liquid water, minerals organic molecules, and geothermal heat – ingredients for life as we know on Earth. http://www.lpi.usra.edu/meetings/lpsc2012/pdf/2943.pdf
Didymus, JohnThomas (January 21, 2013). "Scientists find evidence Mars subsurface could hold life". Digital Journal – Science. Archived from the original on December 13, 2013. Retrieved June 16, 2013. There can be no life on the surface of Mars, because it is bathed in radiation and it's completely frozen. Life in the subsurface would be protected from that. – Prof. Parnell. http://digitaljournal.com/article/341801
Steigerwald, Bill (January 15, 2009). "Martian Methane Reveals the Red Planet is not a Dead Planet". NASA's Goddard Space Flight Center. NASA. Archived from the original on January 17, 2009. Retrieved June 16, 2013. If microscopic Martian life is producing the methane, it likely resides far below the surface, where it's still warm enough for liquid water to exist https://web.archive.org/web/20090117141425/http://www.nasa.gov/mission_pages/mars/news/marsmethane.html
Staff (November 22, 2016). "Scalloped Terrain Led to Finding of Buried Ice on Mars". NASA. Archived from the original on November 24, 2016. Retrieved November 23, 2016. https://photojournal.jpl.nasa.gov/catalog/PIA21136
"Lake of frozen water the size of New Mexico found on Mars – NASA". The Register. November 22, 2016. Archived from the original on November 23, 2016. Retrieved November 23, 2016. https://www.theregister.co.uk/2016/11/22/nasa_finds_ice_under_martian_surface/
"Mars Ice Deposit Holds as Much Water as Lake Superior". NASA. November 22, 2016. Archived from the original on November 23, 2016. Retrieved November 23, 2016. https://www.jpl.nasa.gov/news/news.php?release=2016-299
Orosei, R.; et al. (July 25, 2018). "Radar evidence of subglacial liquid water on Mars". Science. 361 (6401): 490–493. arXiv:2004.04587. Bibcode:2018Sci...361..490O. doi:10.1126/science.aar7268. hdl:11573/1148029. PMID 30045881. S2CID 206666385. /wiki/Science_(journal)
Halton, Mary (July 25, 2018). "Liquid water 'lake' revealed on Mars". BBC News. Archived from the original on July 25, 2018. Retrieved July 26, 2018. https://www.bbc.co.uk/news/science-environment-44952710
Lauro, Sebastian Emanuel; et al. (September 28, 2020). "Multiple subglacial water bodies below the south pole of Mars unveiled by new MARSIS data". Nature Astronomy. 5: 63–70. arXiv:2010.00870. Bibcode:2021NatAs...5...63L. doi:10.1038/s41550-020-1200-6. S2CID 222125007. Archived from the original on December 31, 2021. Retrieved September 29, 2020. https://www.nature.com/articles/s41550-020-1200-6
O'Callaghan, Jonathan (September 28, 2020). "Water on Mars: discovery of three buried lakes intrigues scientists". Nature. doi:10.1038/d41586-020-02751-1. PMID 32989309. S2CID 222155190. Archived from the original on January 11, 2022. Retrieved September 29, 2020. https://www.nature.com/articles/d41586-020-02751-1
Grima, Cyril; Mouginot, Jeremie; Kofman, Wlodek; Herique, A.; Beck, P. (January 2022). "The Basal Detectability of an Ice-Covered Mars by MARSIS" (PDF). Geophysical Research Letters. 49 (2). Bibcode:2022GeoRL..4996518G. doi:10.1029/2021GL096518. S2CID 246327935. Archived (PDF) from the original on June 11, 2024. Retrieved August 29, 2022. https://hal-insu.archives-ouvertes.fr/insu-03705391/file/Geophysical%20Research%20Letters%20-%202022%20-%20Grima%20-%20The%20Basal%20Detectability%20of%20an%20Ice%25E2%2580%2590Covered%20Mars%20by%20MARSIS.pdf
Howell, Elizabeth (January 25, 2022). "Mars' suspected underground lake could be just volcanic rock, new study finds". Space.com. Archived from the original on April 4, 2022. Retrieved April 4, 2022. https://www.space.com/mars-underground-lake-volcanic-rock
Wilson, Jim; Dunbar, Brian (August 3, 2017). "Mars Overview". NASA.gov. Archived from the original on December 9, 2021. https://web.archive.org/web/20211209015359/http://www.nasa.gov/mission_pages/mars/overview/index.html
Wright, Vashan; Morzfeld, Matthias; Manga, Michael (August 12, 2024). David Kohlstedt (ed.). "Liquid water in the Martian mid-crust". PNAS. 121 (35): e2409983121. Bibcode:2024PNAS..12109983W. doi:10.1073/pnas.2409983121. PMC 11363344. PMID 39133865. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363344
Sheehan, 1996, p. 35.
Kieffer, H.H.; Jakosky, B.M; Snyder, C. (1992). "The Planet Mars: From Antiquity to the Present". In Kieffer, H.H.; et al. (eds.). Mars. Tucson, AZ: University of Arizona Press. pp. 1–33.
hartmann, 2003, p. 20.
Sheehan, 1996, p. 150.
Spinrad, Hyron; Münch, Guido; Kaplan, Lewis D. (1963). "Letter to the Editor: The Detection of Water Vapor on Mars". The Astrophysical Journal. 137: 1319. Bibcode:1963ApJ...137.1319S. doi:10.1086/147613. https://adsabs.harvard.edu/full/1963ApJ...137.1319S
Spinrad, H.; Münch, G.; Kaplan, L. D. (1963). "Letter to the Editor: the Detection of Water Vapor on Mars". Astrophysical Journal. 137: 1319. Bibcode:1963ApJ...137.1319S. doi:10.1086/147613. /wiki/Bibcode_(identifier)
Leighton, R.B.; Murray, B.C. (1966). "Behavior of Carbon Dioxide and Other Volatiles on Mars". Science. 153 (3732): 136–144. Bibcode:1966Sci...153..136L. doi:10.1126/science.153.3732.136. PMID 17831495. S2CID 28087958. /wiki/Bibcode_(identifier)
Bibring, J. P.; Langevin, Y.; Poulet, F.; Gendrin, A.; Gondet, B.; Berthé, M.; Soufflot, A.; Drossart, P.; Combes, M.; Bellucci, G.; Moroz, V.; Mangold, N.; Schmitt, B.; OMEGA Team (2004). "Perennial water ice identified in the south polar cap of Mars". Nature. 428 (6983): 627–630. Bibcode:2004Natur.428..627B. doi:10.1038/nature02461. PMID 15024393. https://pubmed.ncbi.nlm.nih.gov/15024393/
Leighton, R.B.; Murray, B.C.; Sharp, R.P.; Allen, J.D.; Sloan, R.K. (1965). "Mariner IV Photography of Mars: Initial Results". Science. 149 (3684): 627–630. Bibcode:1965Sci...149..627L. doi:10.1126/science.149.3684.627. PMID 17747569. S2CID 43407530. /wiki/Bibcode_(identifier)
Kliore, A.; et al. (1965). "Occultation Experiment: Results of the First Direct Measurement of Mars's Atmosphere and Ionosphere". Science. 149 (3689): 1243–1248. Bibcode:1965Sci...149.1243K. doi:10.1126/science.149.3689.1243. PMID 17747455. S2CID 34369864. /wiki/Bibcode_(identifier)
Rodriguez, J. Alexis P.; Kargel, Jeffrey S.; Baker, Victor R.; Gulick, Virginia C.; et al. (September 8, 2015). "Martian outflow channels: How did their source aquifers form, and why did they drain so rapidly?". Scientific Reports. 5: 13404. Bibcode:2015NatSR...513404R. doi:10.1038/srep13404. PMC 4562069. PMID 26346067. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4562069
"Regional, Not Global, Processes Led to Huge Martian Floods". Planetary Science Institute. September 11, 2015. Archived from the original on September 29, 2015. Retrieved September 12, 2015 – via SpaceRef. https://archive.today/20150929035120/http://spaceref.com/mars/regional-not-global-processes-led-to-huge-martian-floods.html
Rodriguez, J. Alexis P.; Kargel, Jeffrey S.; Baker, Victor R.; Gulick, Virginia C.; et al. (September 8, 2015). "Martian outflow channels: How did their source aquifers form, and why did they drain so rapidly?". Scientific Reports. 5: 13404. Bibcode:2015NatSR...513404R. doi:10.1038/srep13404. PMC 4562069. PMID 26346067. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4562069
"Ancient Mars Water Existed Deep Underground". Space.com. July 2, 2012. Archived from the original on May 9, 2021. Retrieved July 13, 2012. http://www.space.com/16335-mars-underground-water-impact-craters.html
Craddock, R.; Howard, A. (2002). "The case for rainfall on a warm, wet early Mars". Journal of Geophysical Research. 107 (E11): E11. Bibcode:2002JGRE..107.5111C. doi:10.1029/2001je001505. https://doi.org/10.1029%2F2001je001505
"4.2.2: Aqueous Minerals". December 4, 2022. https://geo.libretexts.org/Bookshelves/Geology/Mineralogy_(Perkins_et_al.)/04%3A_Crystals_and_Crystallization/4.02%3A_Forming_Crystals/4.2.02%3A_Aqueous_Minerals
Soderblom, L. A.; Bell, J. F. (2008). "Exploration of the Martian Surface: 1992–2007". In Bell, J. F. (ed.). The Martian Surface: Composition, Mineralogy, and Physical Properties. Cambridge University Press. pp. 3–19. Bibcode:2008mscm.book.....B. ISBN 9780521866989. 9780521866989
Ming, D. W.; Morris, R. V.; Clark, R. C. (2008). "Aqueous Alteration on Mars". In Bell, J. F. (ed.). The Martian Surface: Composition, Mineralogy, and Physical Properties. Cambridge University Press. pp. 519–540. Bibcode:2008mscm.book.....B. ISBN 9780521866989. 9780521866989
Lewis, J. S. (1997). Physics and Chemistry of the Solar System (revised ed.). San Diego, California: Academic Press. ISBN 978-0-12-446742-2. 978-0-12-446742-2
Lasue, J.; et al. (2013). "Quantitative Assessments of the Martian Hydrosphere". Space Science Reviews. 174 (1–4): 155–212. Bibcode:2013SSRv..174..155L. doi:10.1007/s11214-012-9946-5. S2CID 122747118. /wiki/Bibcode_(identifier)
Clark, B. C.; et al. (2005). "Chemistry and Mineralogy of Outcrops at Meridiani Planum". Earth and Planetary Science Letters. 240 (1): 73–94. Bibcode:2005E&PSL.240...73C. doi:10.1016/j.epsl.2005.09.040. /wiki/Bibcode_(identifier)
Bloom, A. L. (1978). Geomorphology: A Systematic Analysis of Late Cenozoic Landforms. Englewood Cliffs, New Jersey: Prentice-Hall. p. 114. ISBN 9780133530865. 9780133530865
Boynton, W. V.; et al. (2009). "Evidence for Calcium Carbonate at the Mars Phoenix Landing Site". Science. 325 (5936): 61–4. Bibcode:2009Sci...325...61B. doi:10.1126/science.1172768. PMID 19574384. S2CID 26740165. /wiki/Bibcode_(identifier)
Gooding, J. L.; Arvidson, R. E.; Zolotov, M. Yu. (1992). "Physical and Chemical Weathering". In Kieffer, H. H.; et al. (eds.). Mars. Tucson, Arizona: University of Arizona Press. pp. 626–651. ISBN 978-0-8165-1257-7. 978-0-8165-1257-7
Melosh, H. J. (2011). Planetary Surface Processes. Cambridge University Press. p. 296. ISBN 978-0-521-51418-7. 978-0-521-51418-7
Abramov, O.; Kring, D. A. (2005). "Impact-Induced Hydrothermal Activity on Early Mars". Journal of Geophysical Research. 110 (E12): E12S09. Bibcode:2005JGRE..11012S09A. doi:10.1029/2005JE002453. S2CID 20787765. https://doi.org/10.1029%2F2005JE002453
Schrenk, M. O.; Brazelton, W. J.; Lang, S. Q. (2013). "Serpentinization, Carbon, and Deep Life". Reviews in Mineralogy & Geochemistry. 75 (1): 575–606. Bibcode:2013RvMG...75..575S. doi:10.2138/rmg.2013.75.18. S2CID 8600635. /wiki/Bibcode_(identifier)
Baucom, Martin (March–April 2006). "Life on Mars?". American Scientist. 94 (2): 119. doi:10.1511/2006.58.119. Archived from the original on June 15, 2017. Retrieved October 23, 2013. https://web.archive.org/web/20170615115316/http://www.americanscientist.org/issues/pub/life-on-mars
Chassefière, E; Langlais, B.; Quesnel, Y.; Leblanc, F. (2013), "The Fate of Early Mars' Lost Water: The Role of Serpentinization" (PDF), EPSC Abstracts, vol. 8, p. EPSC2013-188, archived (PDF) from the original on July 6, 2021, retrieved October 23, 2013 http://meetingorganizer.copernicus.org/EPSC2013/EPSC2013-188.pdf
Ehlmann, B. L.; Mustard, J. F.; Murchie, S. L. (2010). "Geologic Setting of Serpentine Deposits on Mars" (PDF). Geophysical Research Letters. 37 (6): L06201. Bibcode:2010GeoRL..37.6201E. doi:10.1029/2010GL042596. S2CID 10738206. Archived (PDF) from the original on September 18, 2021. Retrieved July 23, 2019. /wiki/John_F._Mustard
Bloom, A. L. (1978). Geomorphology: A Systematic Analysis of Late Cenozoic Landforms. Englewood Cliffs, New Jersey: Prentice-Hall. ISBN 9780133530865.., p. 120 9780133530865
Melosh, H.J., 2011. Planetary surface processes. Cambridge Univ. Press., pp. 500
Ody, A.; et al. (2013). "Global Investigation of Olivine on Mars: Insights into Crust and Mantle Compositions". Journal of Geophysical Research. 118 (2): 234–262. Bibcode:2013JGRE..118..234O. doi:10.1029/2012JE004149. https://doi.org/10.1029%2F2012JE004149
Swindle, T. D.; Treiman, A. H.; Lindstrom, D. J.; Burkland, M. K.; Cohen, B. A.; Grier, J. A.; Li, B.; Olson, E. K. (2000). "Noble Gases in Iddingsite from the Lafayette meteorite: Evidence for Liquid water on Mars in the last few hundred million years". Meteoritics and Planetary Science. 35 (1): 107–115. Bibcode:2000M&PS...35..107S. doi:10.1111/j.1945-5100.2000.tb01978.x. /wiki/JA_Grier
Head, J.; Kreslavsky, M. A.; Ivanov, M. A.; Hiesinger, H.; Fuller, E. R.; Pratt, S. (2001). "Water in Middle Mars History: New Insights From MOLA Data". AGU Spring Meeting Abstracts. 2001: P31A–02 INVITED. Bibcode:2001AGUSM...P31A02H. /wiki/Bibcode_(identifier)
Head, J.; et al. (2001). "Exploration for standing Bodies of Water on Mars: When Were They There, Where did They go, and What are the Implications for Astrobiology?". AGU Fall Meeting Abstracts. 21: P21C–03. Bibcode:2001AGUFM.P21C..03H. /wiki/Bibcode_(identifier)
Meyer, C. (2012) The Martian Meteorite Compendium; National Aronautics and Space Administration. http://curator.jsc.nasa.gov/antmet/mmc/ Archived May 7, 2021, at the Wayback Machine. https://curator.jsc.nasa.gov/antmet/mmc/
"Shergotty Meteorite – JPL, NASA". NASA. Archived from the original on January 18, 2011. Retrieved December 19, 2010. https://www2.jpl.nasa.gov/snc/shergotty.html
Hamiliton, W.; Christensen, Philip R.; McSween, Harry Y. (1997). "Determination of Martian meteorite lithologies and mineralogies using vibrational spectroscopy". Journal of Geophysical Research. 102 (E11): 25593–25603. Bibcode:1997JGR...10225593H. doi:10.1029/97JE01874. /wiki/Bibcode_(identifier)
Treiman, A. (2005). "The nakhlite meteorites: Augite-rich igneous rocks from Mars" (PDF). Chemie der Erde – Geochemistry. 65 (3): 203–270. Bibcode:2005ChEG...65..203T. doi:10.1016/j.chemer.2005.01.004. Archived (PDF) from the original on March 27, 2009. Retrieved September 8, 2006. http://www.lpi.usra.edu/science/treiman/nakhlite_rev.pdf
Agee, Carl B.; Wilson, Nicole V.; McCubbin, Francis M.; Ziegler, Karen; Polyak, Victor J.; Sharp, Zachary D.; Asmerom, Yemane; Nunn, Morgan H.; Shaheen, Robina; Thiemens, Mark H.; Steele, Andrew; Fogel, Marilyn L.; Bowden, Roxane; Glamoclija, Mihaela; Zhang, Zhisheng; Elardo, Stephen M. (February 15, 2013). "Unique Meteorite from Early Amazonian Mars: Water-Rich Basaltic Breccia Northwest Africa 7034". Science. 339 (6121): 780–785. Bibcode:2013Sci...339..780A. doi:10.1126/science.1228858. PMID 23287721. S2CID 206544554. https://doi.org/10.1126%2Fscience.1228858
Agree, C.; et al. (2013). "Unique Meteorite from Early Amazonian Mars: Water-Rich Basaltic Breccia Northwest Africa 7034". Science. 339 (6121): 780–785. Bibcode:2013Sci...339..780A. doi:10.1126/science.1228858. PMID 23287721. S2CID 206544554. https://doi.org/10.1126%2Fscience.1228858
McKay, D. Jr.; Gibson, E. K.; Thomas-Keprta, K. L.; Vali, H.; Romanek, C. S.; Clemett, S. J.; Chillier, X. D.; Maechling, C. R.; Zare, R. N. (1996). "Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite AL84001". Science. 273 (5277): 924–930. Bibcode:1996Sci...273..924M. doi:10.1126/science.273.5277.924. PMID 8688069. S2CID 40690489. /wiki/Bibcode_(identifier)
Gibbs, W.; Powell, C. (August 19, 1996). "Bugs in the Data?". Scientific American. Archived from the original on October 17, 2012. Retrieved December 19, 2010. http://www.scientificamerican.com/article.cfm?id=bugs-in-the-data
"Controversy Continues: Mars Meteorite Clings to Life – Or Does It?". Space.com. March 20, 2002. Archived from the original on April 4, 2002. Retrieved November 27, 2009. https://web.archive.org/web/20020404034759/http://www.space.com/scienceastronomy/solarsystem/mars_meteorite_020320.html
Bada, J.; Glavin, D. P.; McDonald, G. D.; Becker, L. (1998). "A Search for Endogenous Amino Acids in Martian Meteorite AL84001". Science. 279 (5349): 362–365. Bibcode:1998Sci...279..362B. doi:10.1126/science.279.5349.362. PMID 9430583. S2CID 32301715. /wiki/Bibcode_(identifier)
Garcia-Ruiz, Juan-Manuel Garcia-Ruiz (December 30, 1999). "Morphological behavior of inorganic precipitation systems". In Hoover, Richard B. (ed.). Instruments, Methods, and Missions for Astrobiology II. Vol. 3755. pp. 74–82. doi:10.1117/12.375088. S2CID 84764520. It is concluded that 'morphology cannot be used unambiguously as a tool for primitive life detection'. {{cite book}}: |journal= ignored (help) /wiki/Doi_(identifier)
Agresti; House; Jögi; Kudryavstev; McKeegan; Runnegar; Schopf; Wdowiak (December 3, 2008). "Detection and geochemical characterization of Earth's earliest life". NASA Astrobiology Institute. NASA. Archived from the original on January 23, 2013. Retrieved January 15, 2013. https://web.archive.org/web/20130123132429/http://astrobiology.ucla.edu/pages/res3e.html
Schopf, J. William; Kudryavtsev, Anatoliy B.; Czaja, Andrew D.; Tripathi, Abhishek B. (April 28, 2007). "Evidence of Archean life: Stromatolites and microfossils" (PDF). Precambrian Research. 158 (3–4): 141–155. Bibcode:2007PreR..158..141S. doi:10.1016/j.precamres.2007.04.009. Archived from the original (PDF) on December 24, 2012. Retrieved January 15, 2013. https://web.archive.org/web/20121224202951/http://www.cornellcollege.edu/geology/courses/greenstein/paleo/schopf_07.pdf
"Regional, Not Global, Processes Led to Huge Martian Floods". Planetary Science Institute. September 11, 2015. Archived from the original on September 29, 2015. Retrieved September 12, 2015 – via SpaceRef. https://archive.today/20150929035120/http://spaceref.com/mars/regional-not-global-processes-led-to-huge-martian-floods.html
Raeburn, P. (1998). "Uncovering the Secrets of the Red Planet Mars". National Geographic. Washington D.C.
Moore, P.; et al. (1990). The Atlas of the Solar System. New York: Mitchell Beazley Publishers.
"Ancient ocean may have covered third of Mars". Science Daily. June 14, 2010. Archived from the original on October 9, 2021. Retrieved February 28, 2018. https://www.sciencedaily.com/releases/2010/06/100613181245.htm
Berman, Daniel C.; Crown, David A.; Bleamaster, Leslie F. (2009). "Degradation of mid-latitude craters on Mars". Icarus. 200 (1): 77–95. Bibcode:2009Icar..200...77B. doi:10.1016/j.icarus.2008.10.026. /wiki/Bibcode_(identifier)
Fassett, Caleb I.; Head, James W. (2008). "The timing of martian valley network activity: Constraints from buffered crater counting". Icarus. 195 (1): 61–89. Bibcode:2008Icar..195...61F. doi:10.1016/j.icarus.2007.12.009. /wiki/Bibcode_(identifier)
"HiRISE | HiPOD: 29 Jul 2023". Archived from the original on July 31, 2023. Retrieved July 31, 2023. https://www.uahirise.org/hipod/PSP_002424_1765
Malin, Michael C. (2010). "An overview of the 1985–2006 Mars Orbiter Camera science investigation". The Mars Journal. 5: 1–60. Bibcode:2010IJMSE...5....1M. doi:10.1555/mars.2010.0001. S2CID 128873687. /wiki/Bibcode_(identifier)
"Sinuous Ridges Near Aeolis Mensae". University of Arizona. January 31, 2007. Archived from the original on March 5, 2016. Retrieved October 8, 2009. https://web.archive.org/web/20160305025124/http://hiroc.lpl.arizona.edu/images/PSP/diafotizo.php?ID=PSP_002279_1735
Zimbelman, J.; Griffin, L. (2010). "HiRISE images of yardangs and sinuous ridges in the lower member of the Medusae Fossae Formation, Mars". Icarus. 205 (1): 198–210. Bibcode:2010Icar..205..198Z. doi:10.1016/j.icarus.2009.04.003. /wiki/Bibcode_(identifier)
Newsom, H.; Lanza, Nina L.; Ollila, Ann M.; Wiseman, Sandra M.; Roush, Ted L.; Marzo, Giuseppe A.; Tornabene, Livio L.; Okubo, Chris H.; Osterloo, Mikki M.; Hamilton, Victoria E.; Crumpler, Larry S. (2010). "Inverted channel deposits on the floor of Miyamoto crater, Mars". Icarus. 205 (1): 64–72. Bibcode:2010Icar..205...64N. doi:10.1016/j.icarus.2009.03.030. /wiki/Bibcode_(identifier)
Morgan, A. M.; Howard, A. D.; Hobley, D. E. J.; Moore, J. M.; Dietrich, W. E.; Williams, R. M. E.; Burr, D. M.; Grant, J. A.; Wilson, S. A.; Matsubara, Y. (2014). "Sedimentology and climatic environment of alluvial fans in the martian Saheki crater and a comparison with terrestrial fans in the Atacama Desert" (PDF). Icarus. 229: 131–156. Bibcode:2014Icar..229..131M. doi:10.1016/j.icarus.2013.11.007. Archived (PDF) from the original on July 20, 2018. Retrieved July 23, 2019. https://repository.si.edu/bitstream/handle/10088/21823/nasm_201440.pdf
Weitz, C.; Milliken, R.E.; Grant, J.A.; McEwen, A.S.; Williams, R.M.E.; Bishop, J.L.; Thomson, B.J. (2010). "Mars Reconnaissance Orbiter observations of light-toned layered deposits and associated fluvial landforms on the plateaus adjacent to Valles Marineris". Icarus. 205 (1): 73–102. Bibcode:2010Icar..205...73W. doi:10.1016/j.icarus.2009.04.017. /wiki/Janice_Bishop
Zendejas, J.; Segura, A.; Raga, A.C. (December 2010). "Atmospheric mass loss by stellar wind from planets around main sequence M stars". Icarus. 210 (2): 539–1000. arXiv:1006.0021. Bibcode:2010Icar..210..539Z. doi:10.1016/j.icarus.2010.07.013. S2CID 119243879. /wiki/ArXiv_(identifier)
Cabrol, N.; Grin, E., eds. (2010). Lakes on Mars. New York: Elsevier.
Goldspiel, J.; Squires, S. (2000). "Groundwater sapping and valley formation on Mars". Icarus. 148 (1): 176–192. Bibcode:2000Icar..148..176G. doi:10.1006/icar.2000.6465. /wiki/Bibcode_(identifier)
Irwin, Rossman P.; Howard, Alan D.; Craddock, Robert A.; Moore, Jeffrey M. (2005). "An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development". Journal of Geophysical Research. 110 (E12): E12S15. Bibcode:2005JGRE..11012S15I. doi:10.1029/2005JE002460. https://doi.org/10.1029%2F2005JE002460
Fassett, C.; Head, III (2008). "Valley network-fed, open-basin lakes on Mars: Distribution and implications for Noachian surface and subsurface hydrology". Icarus. 198 (1): 37–56. Bibcode:2008Icar..198...37F. doi:10.1016/j.icarus.2008.06.016. /wiki/Bibcode_(identifier)
Parker, T.; Clifford, S. M.; Banerdt, W. B. (2000). "Argyre Planitia and the Mars Global Hydrologic Cycle" (PDF). Lunar and Planetary Science. XXXI: 2033. Bibcode:2000LPI....31.2033P. Archived (PDF) from the original on July 6, 2021. Retrieved December 19, 2010. http://www.lpi.usra.edu/meetings/lpsc2000/pdf/2033.pdf
Heisinger, H.; Head, J. (2002). "Topography and morphology of the Argyre basin, Mars: implications for its geologic and hydrologic history". Planetary and Space Science. 50 (10–11): 939–981. Bibcode:2002P&SS...50..939H. doi:10.1016/S0032-0633(02)00054-5. /wiki/Bibcode_(identifier)
Moore, J.; Wilhelms, D. (2001). "Hellas as a possible site of ancient ice-covered lakes on Mars" (PDF). Icarus. 154 (2): 258–276. Bibcode:2001Icar..154..258M. doi:10.1006/icar.2001.6736. hdl:2060/20020050249. S2CID 122991710. Archived (PDF) from the original on October 9, 2021. Retrieved July 7, 2017. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20020050249_2002081883.pdf
Weitz, C.; Parker, T. (2000). "New evidence that the Valles Marineris interior deposits formed in standing bodies of water" (PDF). Lunar and Planetary Science. XXXI: 1693. Bibcode:2000LPI....31.1693W. Archived (PDF) from the original on July 6, 2021. Retrieved December 19, 2010. http://www.lpi.usra.edu/meetings/lpsc2000/pdf/1693.pdf
Carr, Michael H. The Surface of Mars. Cambridge Planetary Science. Cambridge University Press. ISBN 978-0-511-26688-1. 978-0-511-26688-1
Nedell, S.; Squyres, Steven W.; Andersen, David W. (1987). "Origin and evolution of the layered deposits in the Valles Marineris, Mars". Icarus. 70 (3): 409–441. Bibcode:1987Icar...70..409N. doi:10.1016/0019-1035(87)90086-8. /wiki/Bibcode_(identifier)
Matsubara, Yo; Howard, Alan D.; Drummond, Sarah A. (2011). "Hydrology of early Mars: Lake basins". Journal of Geophysical Research: Planets. 116 (116.E4). Bibcode:2011JGRE..116.4001M. doi:10.1029/2010JE003739. /wiki/Bibcode_(identifier)
"Spectacular Mars images reveal evidence of ancient lakes". Sciencedaily.com. January 4, 2010. Archived from the original on August 23, 2016. Retrieved February 28, 2018. https://web.archive.org/web/20160823210537/https://www.sciencedaily.com/releases/2012/01/100104092452.htm
Gupta, Sanjeev; Warner, Nicholas; Kim, Rack; Lin, Yuan; Muller, Jan; -1#Jung-, Shih- (2010). "Hesperian equatorial thermokarst lakes in Ares Vallis as evidence for transient warm conditions on Mars". Geology. 38 (1): 71–74. Bibcode:2010Geo....38...71W. doi:10.1130/G30579.1.{{cite journal}}: CS1 maint: numeric names: authors list (link) /wiki/Bibcode_(identifier)
Brown, Dwayne; Cole, Steve; Webster, Guy; Agle, D.C. (September 27, 2012). "NASA Rover Finds Old Streambed On Martian Surface". NASA. https://www.nasa.gov/home/hqnews/2012/sep/HQ_12-338_Mars_Water_Stream.html
NASA (September 27, 2012). "NASA's Curiosity Rover Finds Old Streambed on Mars – video (51:40)". NASAtelevision. Archived from the original on November 13, 2021. /wiki/NASA
Chang, Alicia (September 27, 2012). "Mars rover Curiosity finds signs of ancient stream". Associated Press. http://apnews.excite.com/article/20120927/DA1IDOO00.html
"NASA Rover Finds Conditions Once Suited for Ancient Life on Mars". NASA. March 12, 2013. Archived from the original on July 3, 2013. Retrieved June 16, 2013. https://web.archive.org/web/20130703035324/http://www.nasa.gov/mission_pages/msl/news/msl20130312.html
Brown, Dwayne; Cole, Steve; Webster, Guy; Agle, D.C. (September 27, 2012). "NASA Rover Finds Old Streambed On Martian Surface". NASA. https://www.nasa.gov/home/hqnews/2012/sep/HQ_12-338_Mars_Water_Stream.html
Parker, Timothy J.; Currey, Donald R. (April 2001). "Extraterrestrial coastal geomorphology". Geomorphology. 37 (3–4): 303–328. Bibcode:2001Geomo..37..303P. doi:10.1016/s0169-555x(00)00089-1. ISSN 0169-555X. https://doi.org/10.1016/S0169-555X(00)00089-1
de Pablo, M.A.; Druet, M. (2002). "Description, Origin and Evolution of a Basin in Sirenum Terrae, Mars, Including Atlantis Chaos: a Preliminary Study" (PDF). Lunar and Planetary Science Conference XXXIII 11-15 March, 2002: 1032. Bibcode:2002LPI....33.1032D. abstract no.1032. https://www.lpi.usra.edu/meetings/lpsc2002/pdf/1032.pdf
de Pablo, M.A. (2003). "Mola Topographic Data Analysis of the Atlantis Paleolake Basin, Sirenum Terrae, Mars" (PDF). Sixth International Conference on Mars. 20–25 July, 2003. Pasadena, California: 3037. Bibcode:2003mars.conf.3037D. abstract #3037. https://www.lpi.usra.edu/meetings/sixthmars2003/pdf/3037.pdf
"Mars Study Yields Clues to Possible Cradle of Life". Astrobiology Magazine. October 8, 2017. Archived from the original on October 11, 2017. https://web.archive.org/web/20171011233107/https://www.astrobio.net/also-in-news/mars-study-yields-clues-possible-cradle-life/
"Mars' Eridania Basin Once Held Vast Sea". Sci-News.com. October 9, 2017. Archived from the original on April 22, 2023. Retrieved June 6, 2022. http://www.sci-news.com/space/mars-eridania-basin-vast-sea-05301.html
Michalski, J.; et al. (2017). "Ancient hydrothermal seafloor deposits in Eridania basin on Mars". Nature Communications. 8: 15978. Bibcode:2017NatCo...815978M. doi:10.1038/ncomms15978. PMC 5508135. PMID 28691699. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5508135
Irwin, R.; et al. (2004). "Geomorphology of Ma'adim Vallis, Mars, and associated paleolake basins". Journal of Geophysical Research: Planets. 109 (E12): E12009. Bibcode:2004JGRE..10912009I. doi:10.1029/2004je002287. S2CID 12637702. https://doi.org/10.1029%2F2004je002287
Hynek, B.; et al. (2010). "Updated global map of Martian valley networks and implications for climate and hydrologic processes". Journal of Geophysical Research. 115 (E9): E09008. Bibcode:2010JGRE..115.9008H. doi:10.1029/2009je003548. https://doi.org/10.1029%2F2009je003548
Michalski, J.; et al. (2017). "Ancient hydrothermal seafloor deposits in Eridania basin on Mars". Nature Communications. 8: 15978. Bibcode:2017NatCo...815978M. doi:10.1038/ncomms15978. PMC 5508135. PMID 28691699. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5508135
Di Achille, Gaetano; Hynek, Brian M. (2010). "Ancient ocean on Mars supported by global distribution of deltas and valleys". Nature Geoscience. 3 (7): 459–463. Bibcode:2010NatGe...3..459D. doi:10.1038/ngeo891. /wiki/Bibcode_(identifier)
Irwin, Rossman P.; Howard, Alan D.; Craddock, Robert A.; Moore, Jeffrey M. (2005). "An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development". Journal of Geophysical Research. 110 (E12): E12S15. Bibcode:2005JGRE..11012S15I. doi:10.1029/2005JE002460. https://doi.org/10.1029%2F2005JE002460
Di Achille, Gaetano; Hynek, Brian M. (2010). "Ancient ocean on Mars supported by global distribution of deltas and valleys". Nature Geoscience. 3 (7): 459–463. Bibcode:2010NatGe...3..459D. doi:10.1038/ngeo891. /wiki/Bibcode_(identifier)
Carr, M. H. (1979). "Formation of Martian flood features by release of water from confined aquifers" (PDF). Journal of Geophysical Research. 84: 2995–3007. Bibcode:1979JGR....84.2995C. doi:10.1029/JB084iB06p02995. Archived from the original (PDF) on September 24, 2015. Retrieved June 16, 2013. https://web.archive.org/web/20150924002006/http://www.es.ucsc.edu/~rcoe/eart206/Carr_MarsFloodFeatures_JGR79.pdf
Baker, V.; Milton, D. (1974). "Erosion by Catastrophic Floods on Mars and Earth". Icarus. 23 (1): 27–41. Bibcode:1974Icar...23...27B. doi:10.1016/0019-1035(74)90101-8. /wiki/Bibcode_(identifier)
"Mars Global Surveyor MOC2-862 Release". Malin Space Science Systems. Archived from the original on April 12, 2009. Retrieved January 16, 2012. https://web.archive.org/web/20090412041936/http://www.msss.com/mars_images/moc/2004/09/27/
Andrews-Hanna, Jeffrey C.; Phillips, Roger J.; Zuber, Maria T. (2007). "Meridiani Planum and the global hydrology of Mars". Nature. 446 (7132): 163–136. Bibcode:2007Natur.446..163A. doi:10.1038/nature05594. PMID 17344848. S2CID 4428510. /wiki/Bibcode_(identifier)
Carr, Michael H. The Surface of Mars. Cambridge Planetary Science. Cambridge University Press. ISBN 978-0-511-26688-1. 978-0-511-26688-1
Irwin; Rossman, P.; Craddock, Robert A.; Howard, Alan D. (2005). "Interior channels in Martian valley networks: Discharge and runoff production". Geology. 33 (6): 489–492. Bibcode:2005Geo....33..489I. doi:10.1130/g21333.1. S2CID 5663347. /wiki/Bibcode_(identifier)
Jakosky, Bruce M. (1999). "Water, Climate, and Life". Science. 283 (5402): 648–649. doi:10.1126/science.283.5402.648. PMID 9988657. S2CID 128560172. /wiki/Doi_(identifier)
Carr, Michael H. The Surface of Mars. Cambridge Planetary Science. Cambridge University Press. ISBN 978-0-511-26688-1. 978-0-511-26688-1
Lamb, Michael P.; et al. (2006). "Can springs cut canyons into rock?". Journal of Geophysical Research: Planets. 111 (111.E7). Bibcode:2006JGRE..111.7002L. doi:10.1029/2005JE002663. Archived from the original on April 22, 2023. Retrieved June 23, 2022. https://web.archive.org/web/20230422115651/https://authors.library.caltech.edu/15925/
Carr, Michael H. The Surface of Mars. Cambridge Planetary Science. Cambridge University Press. ISBN 978-0-511-26688-1. 978-0-511-26688-1
Michalski, Joseph R.; Niles, Paul B.; Cuadros, Javier; Parnell, John; Rogers, A. Deanne; Wright, Shawn P. (January 20, 2013). "Groundwater activity on Mars and implications for a deep biosphere". Nature Geoscience. 6 (2): 133–138. Bibcode:2013NatGe...6..133M. doi:10.1038/ngeo1706. Here we present a conceptual model of subsurface habitability of Mars and evaluate evidence for groundwater upwelling in deep basins. /wiki/Bibcode_(identifier)
Grotzinger, J. P.; Arvidson, R. E.; Bell III, J. F.; Calvin, W.; Clark, B. C.; Fike, D. A.; Golombek, M.; Greeley, R.; Haldemann, A.; Herkenhoff, K. E.; Jolliff, B. L.; Knoll, A. H.; Malin, M.; McLennan, S. M.; Parker, T.; Soderblom, L.; Sohl-Dickstein, J. N.; Squyres, S. W.; Tosca, N. J.; Watters, W. A. (November 25, 2005). "Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum". Earth and Planetary Science Letters. 240 (1): 11–72. Bibcode:2005E&PSL.240...11G. doi:10.1016/j.epsl.2005.09.039. ISSN 0012-821X. /wiki/Bibcode_(identifier)
Zuber, Maria T. (2007). "Planetary Science: Mars at the tipping point". Nature. 447 (7146): 785–786. Bibcode:2007Natur.447..785Z. doi:10.1038/447785a. PMID 17568733. S2CID 4427572. /wiki/Bibcode_(identifier)
Andrews-Hanna, J. C.; Zuber, M. T.; Arvidson, R. E.; Wiseman, S. M. (2010). "Early Mars hydrology: Meridiani playa deposits and the sedimentary record of Arabia Terra". Journal of Geophysical Research. 115 (E6): E06002. Bibcode:2010JGRE..115.6002A. doi:10.1029/2009JE003485. hdl:1721.1/74246. https://doi.org/10.1029%2F2009JE003485
McLennan, S. M.; et al. (2005). "Provenance and diagenesis of the evaporitebearing Burns formation, Meridiani Planum, Mars". Earth and Planetary Science Letters. 240 (1): 95–121. Bibcode:2005E&PSL.240...95M. doi:10.1016/j.epsl.2005.09.041. /wiki/Bibcode_(identifier)
Squyres, S. W.; Knoll, A. H. (2005). "Sedimentary rocks at Meridiani Planum: Origin, diagenesis, and implications for life on Mars". Earth and Planetary Science Letters. 240 (1): 1–10. Bibcode:2005E&PSL.240....1S. doi:10.1016/j.epsl.2005.09.038.. /wiki/Bibcode_(identifier)
Squyres, S. W.; et al. (2006). "Two years at Meridiani Planum: Results from the Opportunity rover" (PDF). Science. 313 (5792): 1403–1407. Bibcode:2006Sci...313.1403S. doi:10.1126/science.1130890. PMID 16959999. S2CID 17643218. Archived (PDF) from the original on August 31, 2021. Retrieved March 16, 2019.. https://eprints.utas.edu.au/2614/1/Science2007.pdf
Wiseman, M.; Andrews-Hanna, J. C.; Arvidson, R. E.; Mustard, J. F.; Zabrusky, K. J. (2011). Distribution of Hydrated Sulfates Across Arabia Terra Using CRISM Data: Implications for Martian Hydrology (PDF). 42nd Lunar and Planetary Science Conference. Archived (PDF) from the original on September 18, 2021. Retrieved October 3, 2018. https://www.lpi.usra.edu/meetings/lpsc2011/pdf/2133.pdf
Andrews-Hanna, Jeffrey C.; Lewis, Kevin W. (2011). "Early Mars hydrology: 2. Hydrological evolution in the Noachian and Hesperian epochs". Journal of Geophysical Research: Planets. 116 (E2): E2. Bibcode:2011JGRE..116.2007A. doi:10.1029/2010je003709. S2CID 17293290. https://doi.org/10.1029%2F2010je003709
ESA Staff (February 28, 2019). "First Evidence of 'Planet-Wide Groundwater System' on Mars Found". European Space Agency. Archived from the original on September 15, 2019. Retrieved February 28, 2019. https://www.esa.int/Our_Activities/Space_Science/Mars_Express/First_evidence_of_planet-wide_groundwater_system_on_Mars
Houser, Kristin (February 28, 2019). "First Evidence of 'Planet-Wide Groundwater System' on Mars Found". Futurism.com. Archived from the original on January 19, 2021. Retrieved February 28, 2019. https://futurism.com/the-byte/mars-groundwater-system-planet-wide
Salese, Francesco; Pondrelli, Monica; Neeseman, Alicia; Schmidt, Gene; Ori, Gian Gabriele (2019). "Geological Evidence of Planet-Wide Groundwater System on Mars". Journal of Geophysical Research: Planets. 124 (2): 374–395. Bibcode:2019JGRE..124..374S. doi:10.1029/2018JE005802. PMC 6472477. PMID 31007995. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6472477
"Mars: Planet-Wide Groundwater System – New Geological Evidence". February 19, 2019. Archived from the original on August 18, 2020. Retrieved March 2, 2019. https://www.leonarddavid.com/planet%E2%80%90wide-groundwater-system-on-mars-new-geological-evidence/
Baker, V. R.; Strom, R. G.; Gulick, V. C.; Kargel, J. S.; Komatsu, G.; Kale, V. S. (1991). "Ancient oceans, ice sheets and the hydrological cycle on Mars". Nature. 352 (6348): 589–594. Bibcode:1991Natur.352..589B. doi:10.1038/352589a0. S2CID 4321529. /wiki/Bibcode_(identifier)
Cabrol, N.; Grin, E., eds. (2010). Lakes on Mars. New York: Elsevier.
Clifford, S. M.; Parker, T. J. (2001). "The Evolution of the Martian Hydrosphere: Implications for the Fate of a Primordial Ocean and the Current State of the Northern Plains". Icarus. 154 (1): 40–79. Bibcode:2001Icar..154...40C. doi:10.1006/icar.2001.6671. S2CID 13694518. /wiki/Bibcode_(identifier)
Baker, V. R.; Strom, R. G.; Gulick, V. C.; Kargel, J. S.; Komatsu, G.; Kale, V. S. (1991). "Ancient oceans, ice sheets and the hydrological cycle on Mars". Nature. 352 (6348): 589–594. Bibcode:1991Natur.352..589B. doi:10.1038/352589a0. S2CID 4321529. /wiki/Bibcode_(identifier)
Carr, Michael H. The Surface of Mars. Cambridge Planetary Science. Cambridge University Press. ISBN 978-0-511-26688-1. 978-0-511-26688-1
Di Achille, Gaetano; Hynek, Brian M. (2010). "Ancient ocean on Mars supported by global distribution of deltas and valleys". Nature Geoscience. 3 (7): 459–463. Bibcode:2010NatGe...3..459D. doi:10.1038/ngeo891. /wiki/Bibcode_(identifier)
"Ancient ocean may have covered third of Mars". Science Daily. June 14, 2010. Archived from the original on October 9, 2021. Retrieved February 28, 2018. https://www.sciencedaily.com/releases/2010/06/100613181245.htm
Smith, D.; et al. (1999). "The Gravity Field of Mars: Results from Mars Global Surveyor" (PDF). Science. 286 (5437): 94–97. Bibcode:1999Sci...286...94S. doi:10.1126/science.286.5437.94. PMID 10506567. Archived from the original (PDF) on March 5, 2016. Retrieved December 19, 2010. https://web.archive.org/web/20160305005726/http://seismo.berkeley.edu/~rallen/eps122/reading/Smithetal1999.pdf
Read, Peter L.; Lewis, S. R. (2004). The Martian Climate Revisited: Atmosphere and Environment of a Desert Planet. Chichester, UK: Praxis. ISBN 978-3-540-40743-0. Archived from the original (Paperback) on July 24, 2011. Retrieved December 19, 2010. 978-3-540-40743-0
"Martian North Once Covered by Ocean". Astrobiology Magazine. November 26, 2009. Archived from the original on June 4, 2011. Retrieved December 19, 2010. https://web.archive.org/web/20110604121418/http://www.astrobio.net/pressrelease/3322/martian-north-once-covered-by-ocean
Zuber, Maria T. (2007). "Planetary Science: Mars at the tipping point". Nature. 447 (7146): 785–786. Bibcode:2007Natur.447..785Z. doi:10.1038/447785a. PMID 17568733. S2CID 4427572. /wiki/Bibcode_(identifier)
"New Map Bolsters Case for Ancient Ocean on Mars". SPACE.com. November 23, 2009. Archived from the original on March 15, 2010. Retrieved November 24, 2009. http://www.space.com/scienceastronomy/091123-mars-ocean.html
Carr, M.; Head, J. (2003). "Oceans on Mars: An assessment of the observational evidence and possible fate". Journal of Geophysical Research. 108 (E5): 5042. Bibcode:2003JGRE..108.5042C. doi:10.1029/2002JE001963. S2CID 16367611. https://doi.org/10.1029%2F2002JE001963
"Mars Ocean Hypothesis Hits the Shore". NASA Astrobiology. NASA. January 26, 2001. Archived from the original on February 20, 2012. https://web.archive.org/web/20120220081803/http://astrobiology.nasa.gov/articles/mars-ocean-hypothesis-hits-the-shore/
Perron; Taylor, J.; et al. (2007). "Evidence for an ancient Martian ocean in the topography of deformed shorelines". Nature. 447 (7146): 840–843. Bibcode:2007Natur.447..840P. doi:10.1038/nature05873. PMID 17568743. S2CID 4332594. /wiki/Bibcode_(identifier)
Zuber, Maria T. (2007). "Planetary Science: Mars at the tipping point". Nature. 447 (7146): 785–786. Bibcode:2007Natur.447..785Z. doi:10.1038/447785a. PMID 17568733. S2CID 4427572. /wiki/Bibcode_(identifier)
Kaufman, Marc (March 5, 2015). "Mars Had an Ocean, Scientists Say, Pointing to New Data". The New York Times. Archived from the original on March 7, 2020. Retrieved March 5, 2015. https://www.nytimes.com/2015/03/06/science/mars-had-an-ocean-scientists-say-pointing-to-new-data.html
"Ancient Tsunami Evidence on Mars Reveals Life Potential". Astrobiology (Press release). Cornell University. May 20, 2016. Archived from the original on June 11, 2024. Retrieved May 30, 2016. http://astrobiology.com/2016/05/ancient-tsunami-evidence-on-mars-reveals-life-potential.html
Rodriguez, J. Alexis P.; Fairén, Alberto G.; Tanaka, Kenneth L.; Zarroca, Mario; Linares, Rogelio; Platz, Thomas; Komatsu, Goro; Miyamoto, Hideaki; Kargel, Jeffrey S.; Yan, Jianguo; Gulick, Virginia; Higuchi, Kana; Baker, Victor R.; Glines, Natalie (May 19, 2016). "Tsunami waves extensively resurfaced the shorelines of an early Martian ocean". Scientific Reports. 6 (1): 25106. Bibcode:2016NatSR...625106R. doi:10.1038/srep25106. PMC 4872529. PMID 27196957. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4872529
"Ancient tsunami evidence on Mars reveals life potential". ScienceDaily (Press release). Cornell University. May 19, 2016. Archived from the original on October 9, 2021. Retrieved February 28, 2018. https://www.sciencedaily.com/releases/2016/05/160519101756.htm
Andrews, Robin George (July 30, 2019). "When a Mega-Tsunami Drowned Mars, This Spot May Have Been Ground Zero". The New York Times. Archived from the original on December 14, 2021. Retrieved July 31, 2019. https://www.nytimes.com/2019/07/30/science/mars-tsunami-crater.html
Costard, F.; et al. (June 26, 2019). "The Lomonosov Crater Impact Event: A Possible Mega-Tsunami Source on Mars". Journal of Geophysical Research: Planets. 124 (7): 1840–1851. Bibcode:2019JGRE..124.1840C. doi:10.1029/2019JE006008. hdl:20.500.11937/76439. S2CID 198401957. /wiki/Journal_of_Geophysical_Research:_Planets
Schmidt, Frédéric; Way, Michael; et al. (2022). "Circumpolar ocean stability on Mars 3 Gy ago". Proceedings of the National Academy of Sciences. 119 (4). arXiv:2310.00461. Bibcode:2022PNAS..11912930S. doi:10.1073/pnas.2112930118. PMC 8795497. PMID 35042794. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8795497
Fischer, E.; Martínez, G. M.; Rennó, N. O.; Tamppari, L. K.; Zent, A. P. (November 2019). "Relative Humidity on Mars: New Results From the Phoenix TECP Sensor". Journal of Geophysical Research: Planets. 124 (11): 2780–2792. Bibcode:2019JGRE..124.2780F. doi:10.1029/2019je006080. ISSN 2169-9097. PMC 6988475. PMID 32025455. Archived from the original on June 11, 2024. Retrieved April 11, 2024. https://dx.doi.org/10.1029/2019je006080
Hess, Seymour L.; Henry, Robert M.; Tillman, James E. (June 10, 1979). "The seasonal variation of atmospheric pressure on Mars as affected by the south polar cap". Journal of Geophysical Research: Solid Earth. 84 (B6): 2923–2927. Bibcode:1979JGR....84.2923H. doi:10.1029/jb084ib06p02923. ISSN 0148-0227. Archived from the original on June 11, 2024. Retrieved April 11, 2024. https://dx.doi.org/10.1029/jb084ib06p02923
Khuller, Aditya R.; Clow, Gary D. (April 2024). "Turbulent Fluxes and Evaporation/Sublimation Rates on Earth, Mars, Titan, and Exoplanets". Journal of Geophysical Research: Planets. 129 (4). Bibcode:2024JGRE..12908114K. doi:10.1029/2023JE008114. ISSN 2169-9097. https://doi.org/10.1029%2F2023JE008114
Head, J.; et al. (2006). "Extensive valley glacier deposits in the northern mid-latitudes of Mars: Evidence for the late Amazonian obliquity-driven climate change". Earth and Planetary Science Letters. 241 (3–4): 663–671. Bibcode:2006E&PSL.241..663H. doi:10.1016/j.epsl.2005.11.016. /wiki/Bibcode_(identifier)
Staff (October 28, 2008). "NASA Mars Reconnaissance Orbiter Reveals Details of a Wetter Mars". SpaceRef. NASA. Archived from the original on February 2, 2013. https://archive.today/20130202173747/http://www.spaceref.com/news/viewpr.html?pid=26817
Lunine, Jonathan I.; Chambers, John; et al. (September 2003). "The Origin of Water on Mars". Icarus. 165 (1): 1–8. Bibcode:2003Icar..165....1L. doi:10.1016/S0019-1035(03)00172-6. /wiki/Bibcode_(identifier)
Lunine, Jonathan I.; Chambers, John; et al. (September 2003). "The Origin of Water on Mars". Icarus. 165 (1): 1–8. Bibcode:2003Icar..165....1L. doi:10.1016/S0019-1035(03)00172-6. /wiki/Bibcode_(identifier)
Boynton, W. V.; et al. (2007). "Concentration of H, Si, Cl, K, Fe, and Th in the low and mid latitude regions of Mars". Journal of Geophysical Research: Planets. 112 (E12): E12S99. Bibcode:2007JGRE..11212S99B. doi:10.1029/2007JE002887. https://doi.org/10.1029%2F2007JE002887
"Mars Express". www.esa.int. Archived from the original on January 21, 2022. Retrieved January 21, 2022. https://www.esa.int/Science_Exploration/Space_Science/Mars_Express
Feldman, W. C.; Prettyman, T. H.; Maurice, S.; Plaut, J. J.; Bish, D. L.; Vaniman, D. T.; Tokar, R. L. (2004). "Global distribution of near-surface hydrogen on Mars". Journal of Geophysical Research. 109 (E9): E9. Bibcode:2004JGRE..109.9006F. doi:10.1029/2003JE002160. E09006. https://doi.org/10.1029%2F2003JE002160
Feldman, W. C.; et al. (2004). "Global distribution of near-surface hydrogen on Mars". Journal of Geophysical Research. 109 (E9): E09006. Bibcode:2004JGRE..109.9006F. doi:10.1029/2003JE002160. https://doi.org/10.1029%2F2003JE002160
Christensen, P. R. (2006). "Water at the Poles and in Permafrost Regions of Mars". Elements. 3 (2): 151–155. Bibcode:2006Eleme...2..151C. doi:10.2113/gselements.2.3.151. /wiki/Bibcode_(identifier)
Feldman, W. C.; et al. (2004). "Global distribution of near-surface hydrogen on Mars". Journal of Geophysical Research. 109 (E9): E09006. Bibcode:2004JGRE..109.9006F. doi:10.1029/2003JE002160. https://doi.org/10.1029%2F2003JE002160
Carr, Michael H. The Surface of Mars. Cambridge Planetary Science. Cambridge University Press. ISBN 978-0-511-26688-1. 978-0-511-26688-1
Feldman, W. C.; et al. (2004). "Global distribution of near-surface hydrogen on Mars". Journal of Geophysical Research. 109 (E9): E09006. Bibcode:2004JGRE..109.9006F. doi:10.1029/2003JE002160. https://doi.org/10.1029%2F2003JE002160
Chevrier, Vincent F.; Rivera-Valentin, Edgard G. (November 2012). "Formation of recurring slope lineae by liquid brines on present-day Mars: LIQUID BRINES ON MARS". Geophysical Research Letters. 39 (21): n/a. doi:10.1029/2012GL054119. S2CID 1077206. https://doi.org/10.1029%2F2012GL054119
Gough, R.V.; Primm, K.M.; Rivera-Valentín, E.G.; Martínez, G.M.; Tolbert, M.A. (March 2019). "Solid-solid hydration and dehydration of Mars-relevant chlorine salts: Implications for Gale Crater and RSL locations". Icarus. 321: 1–13. Bibcode:2019Icar..321....1G. doi:10.1016/j.icarus.2018.10.034. S2CID 106323485. Archived from the original on July 7, 2022. Retrieved May 13, 2022. https://linkinghub.elsevier.com/retrieve/pii/S0019103518304469
Chevrier, Vincent F.; Altheide, Travis S. (November 18, 2008). "Low temperature aqueous ferric sulfate solutions on the surface of Mars". Geophysical Research Letters. 35 (22): L22101. Bibcode:2008GeoRL..3522101C. doi:10.1029/2008GL035489. ISSN 0094-8276. S2CID 97468338. https://doi.org/10.1029%2F2008GL035489
Chevrier, Vincent F.; Hanley, Jennifer; Altheide, Travis S. (May 20, 2009). "Stability of perchlorate hydrates and their liquid solutions at the Phoenix landing site, Mars". Geophysical Research Letters. 36 (10): L10202. Bibcode:2009GeoRL..3610202C. doi:10.1029/2009GL037497. ISSN 0094-8276. S2CID 42150205. https://doi.org/10.1029%2F2009GL037497
Chevrier, Vincent F.; Altheide, Travis S. (November 18, 2008). "Low temperature aqueous ferric sulfate solutions on the surface of Mars". Geophysical Research Letters. 35 (22): L22101. Bibcode:2008GeoRL..3522101C. doi:10.1029/2008GL035489. ISSN 0094-8276. S2CID 97468338. https://doi.org/10.1029%2F2008GL035489
Gough, R.V.; Chevrier, V.F.; Tolbert, M.A. (May 2014). "Formation of aqueous solutions on Mars via deliquescence of chloride–perchlorate binary mixtures". Earth and Planetary Science Letters. 393: 73–82. Bibcode:2014E&PSL.393...73G. doi:10.1016/j.epsl.2014.02.002. Archived from the original on July 7, 2022. Retrieved May 13, 2022. https://linkinghub.elsevier.com/retrieve/pii/S0012821X14000752
Hecht, M. H.; Kounaves, S. P.; Quinn, R. C.; West, S. J.; Young, S. M. M.; Ming, D. W.; Catling, D. C.; Clark, B. C.; Boynton, W. V.; Hoffman, J.; DeFlores, L. P. (July 3, 2009). "Detection of Perchlorate and the Soluble Chemistry of Martian Soil at the Phoenix Lander Site". Science. 325 (5936): 64–67. Bibcode:2009Sci...325...64H. doi:10.1126/science.1172466. ISSN 0036-8075. PMID 19574385. S2CID 24299495. Archived from the original on May 13, 2022. Retrieved May 13, 2022. https://www.science.org/doi/10.1126/science.1172466
Kounaves, Samuel P.; Hecht, Michael H.; Kapit, Jason; Quinn, Richard C.; Catling, David C.; Clark, Benton C.; Ming, Douglas W.; Gospodinova, Kalina; Hredzak, Patricia; McElhoney, Kyle; Shusterman, Jennifer (May 2010). "Soluble sulfate in the martian soil at the Phoenix landing site: SULFATE AT THE PHOENIX LANDING SITE". Geophysical Research Letters. 37 (9): n/a. Bibcode:2010GeoRL..37.9201K. doi:10.1029/2010GL042613. S2CID 12914422. http://doi.wiley.com/10.1029/2010GL042613
Chevrier, Vincent (2022). "Limited stability of multi-component brines on the surface of Mars". The Planetary Science Journal. 3 (5): 125. Bibcode:2022PSJ.....3..125C. doi:10.3847/PSJ/ac6603. S2CID 249227810. https://doi.org/10.3847%2FPSJ%2Fac6603
Andrews, Robin George (September 20, 2019). "Mysterious magnetic pulses discovered on Mars". National Geographic Society. Archived from the original on September 20, 2019. Retrieved September 20, 2019. https://web.archive.org/web/20190920141718/https://www.nationalgeographic.com/science/2019/09/mars-insight-feels-mysterious-magnetic-pulsations-at-midnight/
"Scientists find hint of hidden liquid water ocean deep below Mars' surface". Live Science. May 12, 2025. https://www.livescience.com/space/mars/scientists-find-hint-of-hidden-liquid-water-ocean-deep-below-mars-surface?utm_term=CABA215D-3D47-4C9A-92FE-9ECF8D4C7909&lrh=e62336263a3610a07ef7c8af2080c758f2ecd0661aab1a8e6234cf31f0d0fdff&utm_campaign=368B3745-DDE0-4A69-A2E8-62503D85375D&utm_medium=email&utm_content=7A404C61-C432-438F-9414-F1C935EF3C79&utm_source=SmartBrief
Sun, W., et al. 2025. Seismic evidence of liquid water at the base of Mars' upper crust. National Science Review. nwaf166, https://doi.org/10.1093/nsr/nwaf166
https://doi.org/10.1093/nsr/nwaf166
Vashan Wright https://orcid.org/0000-0002-3238-4526 vwright@ucsd.edu, Matthias Morzfeld https://orcid.org/0000-0003-2257-8930, and Michael Manga https://orcid.org/0000-0003-3286-4682
121 (35) e2409983121
https://doi.org/10.1073/pnas.2409983121 https://orcid.org/0000-0002-3238-4526
Cutts, James A. (July 10, 1973). "Nature and origin of layered deposits of the Martian polar regions". Journal of Geophysical Research. 78 (20): 4231–4249. Bibcode:1973JGR....78.4231C. doi:10.1029/JB078i020p04231. /wiki/Bibcode_(identifier)
"Mars' South Pole Ice Deep and Wide". NASA News & Media Resources. NASA. March 15, 2007. Archived from the original on December 8, 2021. Retrieved March 18, 2013. https://web.archive.org/web/20211208131250/http://www.nasa.gov/mission_pages/mars/news/mars-20070315.html
Plaut, J. J.; et al. (March 15, 2007). "Subsurface Radar Sounding of the South Polar Layered Deposits of Mars". Science. 316 (5821): 92–95. Bibcode:2007Sci...316...92P. doi:10.1126/science.1139672. PMID 17363628. S2CID 23336149. https://doi.org/10.1126%2Fscience.1139672
Byrne, Shane (2009). "The Polar Deposits of Mars". Annual Review of Earth and Planetary Sciences. 37 (1): 535–560. Bibcode:2009AREPS..37..535B. doi:10.1146/annurev.earth.031208.100101. S2CID 54874200. /wiki/Bibcode_(identifier)
Scanlon, K., et al. 2018. The Dorsa Argentea Formation and the Noachian-Hesperian climate transition. Icarus: 299, 339–363.
Head, J, S. Pratt. 2001. Extensive Hesperian-aged south polar ice sheet on Mars: Evidence for massive melting and retreat, and lateral flow and pending of meltwater. J. Geophys. Res.-Planet, 106 (E6), 12275-12299.
Fishbaugh, KE; Byrne, Shane; Herkenhoff, Kenneth E.; Kirk, Randolph L.; Fortezzo, Corey; Russell, Patrick S.; McEwen, Alfred (2010). "Evaluating the meaning of "layer" in the Martian north polar layered depsoits and the impact on the climate connection" (PDF). Icarus. 205 (1): 269–282. Bibcode:2010Icar..205..269F. doi:10.1016/j.icarus.2009.04.011. Archived (PDF) from the original on July 6, 2021. Retrieved January 19, 2012. http://www.lpl.arizona.edu/~shane/publications/fishbaugh_etal_icarus_2010.pdf
Carr, Michael H. The Surface of Mars. Cambridge Planetary Science. Cambridge University Press. ISBN 978-0-511-26688-1. 978-0-511-26688-1
"How Mars Got Its Layered North Polar Cap". Eos. February 8, 2017. Archived from the original on November 10, 2021. Retrieved September 26, 2019. https://eos.org/research-spotlights/how-mars-got-its-layered-north-polar-cap
"Peeling Back the Layers of the Climate of Mars". Eos. July 18, 2019. Archived from the original on December 5, 2021. Retrieved September 26, 2019. https://eos.org/editor-highlights/peeling-back-the-layers-of-the-climate-of-mars
Conway, Susan J.; Hovius, Niels; Barnie, Talfan; Besserer, Jonathan; Le Mouélic, Stéphane; Orosei, Roberto; Read, Natalie Anne (July 1, 2012). "Climate-driven deposition of water ice and the formation of mounds in craters in Mars' north polar region" (PDF). Icarus. 220 (1): 174–193. Bibcode:2012Icar..220..174C. doi:10.1016/j.icarus.2012.04.021. ISSN 0019-1035. S2CID 121435046. Archived (PDF) from the original on September 18, 2021. Retrieved October 14, 2019. https://hal-insu.archives-ouvertes.fr/insu-02276816/file/HAL_Conway_icarus_2012.pdf
"Ice islands on Mars and Pluto could reveal past climate change". phys.org. Archived from the original on October 9, 2021. Retrieved September 26, 2019. https://phys.org/news/2019-09-ice-islands-mars-pluto-reveal.html
"A winter wonderland in red and white – Korolev Crater on Mars". German Aerospace Center (DLR). Archived from the original on October 17, 2020. Retrieved December 20, 2018. https://www.dlr.de/content/en/articles/news/2018/4/20181220_korolev-crater-on-mars.html
"A winter wonderland in red and white – Korolev Crater on Mars". German Aerospace Center (DLR). Archived from the original on October 17, 2020. Retrieved December 20, 2018. https://www.dlr.de/content/en/articles/news/2018/4/20181220_korolev-crater-on-mars.html
Sample, Ian (December 21, 2018). "Mars Express beams back images of ice-filled Korolev crater". The Guardian. Archived from the original on February 8, 2020. Retrieved December 21, 2018. https://www.theguardian.com/science/2018/dec/21/mars-express-beams-back-images-of-ice-filled-korolev-crater
Duxbury, N. S.; Zotikov, I. A.; Nealson, K. H.; Romanovsky, V. E.; Carsey, F. D. (2001). "A numerical model for an alternative origin of Lake Vostok and its exobiological implications for Mars" (PDF). Journal of Geophysical Research. 106 (E1): 1453. Bibcode:2001JGR...106.1453D. doi:10.1029/2000JE001254. http://www.agu.org/journals/je/v106/iE01/2000JE001254/2000JE001254.pdf
Orosei, R.; et al. (July 25, 2018). "Radar evidence of subglacial liquid water on Mars". Science. 361 (6401): 490–493. arXiv:2004.04587. Bibcode:2018Sci...361..490O. doi:10.1126/science.aar7268. hdl:11573/1148029. PMID 30045881. S2CID 206666385. /wiki/Science_(journal)
Chang, Kenneth; Overbye, Dennis (July 25, 2018). "A Watery Lake Is Detected on Mars, Raising the Potential for Alien Life – The discovery suggests that watery conditions beneath the icy southern polar cap may have provided one of the critical building blocks for life on the red planet". The New York Times. Archived from the original on July 25, 2018. Retrieved July 25, 2018. /wiki/Dennis_Overbye
"Huge reservoir of liquid water detected under the surface of Mars". EurekAlert. July 25, 2018. Archived from the original on July 25, 2018. Retrieved July 25, 2018. https://www.eurekalert.org/pub_releases/2018-07/aaft-hro072318.php
"Liquid water 'lake' revealed on Mars". BBC News. July 25, 2018. Archived from the original on July 25, 2018. Retrieved July 25, 2018. https://www.bbc.co.uk/news/science-environment-44952710
Supplementary Materials Archived July 9, 2022, at the Wayback Machine for: Orosei, R; Lauro, SE; Pettinelli, E; Cicchetti, A; Coradini, M; Cosciotti, B; Di Paolo, F; Flamini, E; Mattei, E; Pajola, M; Soldovieri, F; Cartacci, M; Cassenti, F; Frigeri, A; Giuppi, S; Martufi, R; Masdea, A; Mitri, G; Nenna, C; Noschese, R; Restano, M; Seu, R (2018). "Radar evidence of subglacial liquid water on Mars". Science. 361 (6401): 490–493. arXiv:2004.04587. Bibcode:2018Sci...361..490O. doi:10.1126/science.aar7268. PMID 30045881. https://www.science.org/doi/10.1126/science.aar7268
Orosei, R.; et al. (July 25, 2018). "Radar evidence of subglacial liquid water on Mars". Science. 361 (6401): 490–493. arXiv:2004.04587. Bibcode:2018Sci...361..490O. doi:10.1126/science.aar7268. hdl:11573/1148029. PMID 30045881. S2CID 206666385. /wiki/Science_(journal)
Lauro, Sebastian Emanuel; Pettinelli, Elena; Caprarelli, Graziella; Guallini, Luca; Rossi, Angelo Pio; Mattei, Elisabetta; Cosciotti, Barbara; Cicchetti, Andrea; Soldovieri, Francesco; Cartacci, Marco; Di Paolo, Federico; Noschese, Raffaella; Orosei, Roberto (September 28, 2020). "Multiple subglacial water bodies below the south pole of Mars unveiled by new MARSIS data". Nature Astronomy. 5: 63–70. arXiv:2010.00870. Bibcode:2021NatAs...5...63L. doi:10.1038/s41550-020-1200-6. ISSN 2397-3366. S2CID 222125007. /wiki/ArXiv_(identifier)
Orosei, R.; et al. (July 25, 2018). "Radar evidence of subglacial liquid water on Mars". Science. 361 (6401): 490–493. arXiv:2004.04587. Bibcode:2018Sci...361..490O. doi:10.1126/science.aar7268. hdl:11573/1148029. PMID 30045881. S2CID 206666385. /wiki/Science_(journal)
Halton, Mary (July 25, 2018). "Liquid water 'lake' revealed on Mars". BBC News. Archived from the original on July 25, 2018. Retrieved July 25, 2018. https://www.bbc.com/news/science-environment-44952710
Orosei, R.; et al. (July 25, 2018). "Radar evidence of subglacial liquid water on Mars". Science. 361 (6401): 490–493. arXiv:2004.04587. Bibcode:2018Sci...361..490O. doi:10.1126/science.aar7268. hdl:11573/1148029. PMID 30045881. S2CID 206666385. /wiki/Science_(journal)
Orosei, R.; et al. (July 25, 2018). "Radar evidence of subglacial liquid water on Mars". Science. 361 (6401): 490–493. arXiv:2004.04587. Bibcode:2018Sci...361..490O. doi:10.1126/science.aar7268. hdl:11573/1148029. PMID 30045881. S2CID 206666385. /wiki/Science_(journal)
Sori, Michael M.; Bramson, Ali M. (2019). "Water on Mars, With a Grain of Salt: Local Heat Anomalies Are Required for Basal Melting of Ice at the South Pole Today". Geophysical Research Letters. 46 (3): 1222–1231. Bibcode:2019GeoRL..46.1222S. doi:10.1029/2018GL080985. hdl:10150/633584. ISSN 1944-8007. S2CID 134166238. /wiki/Bibcode_(identifier)
Liu, J., et al. 2023. "Martian dunes indicative of wind regime shift in line with end of ice age". Nature. doi:10.1038/s41586-023-06206-1 /wiki/Doi_(identifier)
"Giant liquid water lake found under Martian ice". RTÉ. July 25, 2018. Archived from the original on July 25, 2021. Retrieved July 26, 2018. https://www.rte.ie/news/2018/0725/981031-mars-lake/
"Giant liquid water lake found under Martian ice". RTÉ. July 25, 2018. Archived from the original on July 25, 2021. Retrieved July 26, 2018. https://www.rte.ie/news/2018/0725/981031-mars-lake/
Heinz, Jacob; Doellinger, Joerg; Maus, Deborah; Schneider, Andy; Lasch, Peter; Grossart, Hans-Peter; Schulze-Makuch, Dirk (August 10, 2022). "Perchlorate-specific proteomic stress responses of Debaryomyces hansenii could enable microbial survival in Martian brines". Environmental Microbiology. 24 (11): 1462–2920.16152. Bibcode:2022EnvMi..24.5051H. doi:10.1111/1462-2920.16152. ISSN 1462-2912. PMID 35920032. https://doi.org/10.1111%2F1462-2920.16152
Kieffer, Hugh H. (1992). Mars. University of Arizona Press. ISBN 978-0-8165-1257-7. Retrieved March 7, 2011. 978-0-8165-1257-7
Wilson, Jack T.; et al. (January 2018). "Equatorial locations of water on Mars: Improved resolution maps based on Mars Odyssey Neutron Spectrometer data". Icarus. 299: 148–160. arXiv:1708.00518. Bibcode:2018Icar..299..148W. doi:10.1016/j.icarus.2017.07.028. S2CID 59520156. /wiki/Icarus_(journal)
Howell, Elizabeth (October 2, 2017). "Water Ice Mystery Found at Martian Equator". Space.com. Archived from the original on November 11, 2021. Retrieved October 2, 2017. https://www.space.com/38330-water-ice-mystery-at-mars-equator.html
"Polygonal Patterned Ground: Surface Similarities Between Mars and Earth". SpaceRef. September 28, 2002. http://www.spaceref.com/news/viewnews.html?id=494
Squyres, S. (1989). "Urey Prize Lecture: Water on Mars". Icarus. 79 (2): 229–288. Bibcode:1989Icar...79..229S. doi:10.1016/0019-1035(89)90078-X. /wiki/Bibcode_(identifier)
Lefort, A.; Russell, P.S.; Thomas, N. (2010). "Scalloped terrains in the Peneus and Amphitrites Paterae region of Mars as observed by HiRISE". Icarus. 205 (1): 259–268. Bibcode:2010Icar..205..259L. doi:10.1016/j.icarus.2009.06.005. /wiki/Bibcode_(identifier)
Steep Slopes on Mars Reveal Structure of Buried Ice Archived June 17, 2019, at the Wayback Machine. NASA Press Release. January 11, 2018. https://www.jpl.nasa.gov/news/news.php?feature=7038
Ice cliffs spotted on Mars Archived January 28, 2018, at the Wayback Machine. Science News. Paul Voosen. January 11, 2018. https://www.science.org/content/article/ice-cliffs-spotted-mars
Steep Slopes on Mars Reveal Structure of Buried Ice Archived June 17, 2019, at the Wayback Machine. NASA Press Release. January 11, 2018. https://www.jpl.nasa.gov/news/news.php?feature=7038
Steep Slopes on Mars Reveal Structure of Buried Ice Archived June 17, 2019, at the Wayback Machine. NASA Press Release. January 11, 2018. https://www.jpl.nasa.gov/news/news.php?feature=7038
Steep Slopes on Mars Reveal Structure of Buried Ice Archived June 17, 2019, at the Wayback Machine. NASA Press Release. January 11, 2018. https://www.jpl.nasa.gov/news/news.php?feature=7038
Piqueux, Sylvain; Buz, Jennifer; Edwards, Christopher S.; Bandfield, Joshua L.; Kleinböhl, Armin; Kass, David M.; Hayne, Paul O. (December 10, 2019). "Widespread Shallow Water Ice on Mars at High and Mid Latitudes" (PDF). Geophysical Research Letters. doi:10.1029/2019GL083947. S2CID 212982895. Archived (PDF) from the original on September 18, 2021. Retrieved December 12, 2019. https://www.hou.usra.edu/meetings/ninthmars2019/pdf/6027.pdf
"NASA's Treasure Map for Water Ice on Mars". Jet Propulsion Laboratory. December 10, 2019. Archived from the original on June 29, 2021. Retrieved December 12, 2019. https://www.jpl.nasa.gov/news/news.php?feature=7557
Dundas, C.; Bryrne, S.; McEwen, A. (2015). "Modeling the development of martian sublimation thermokarst landforms". Icarus 262, 154–169.
Christensen, Philip R. (March 2003). "Formation of recent martian gullies through melting of extensive water-rich snow deposits". Nature. 422 (6927): 45–48. Bibcode:2003Natur.422...45C. doi:10.1038/nature01436. ISSN 1476-4687. PMID 12594459. S2CID 4385806. Archived from the original on August 9, 2021. Retrieved July 27, 2022. https://www.nature.com/articles/nature01436
Head, James W.; Mustard, John F.; Kreslavsky, Mikhail A.; Milliken, Ralph E.; Marchant, David R. (2003). "Recent ice ages on Mars". Nature. 426 (6968): 797–802. Bibcode:2003Natur.426..797H. doi:10.1038/nature02114. PMID 14685228. S2CID 2355534. /wiki/Bibcode_(identifier)
"HiRISE Dissected Mantled Terrain (PSP_002917_2175)". Arizona University. Archived from the original on August 21, 2017. Retrieved December 19, 2010. http://hirise.lpl.arizona.edu/PSP_002917_2175
Zendejas, J.; Segura, A.; Raga, A.C. (December 2010). "Atmospheric mass loss by stellar wind from planets around main sequence M stars". Icarus. 210 (2): 539–1000. arXiv:1006.0021. Bibcode:2010Icar..210..539Z. doi:10.1016/j.icarus.2010.07.013. S2CID 119243879. /wiki/ArXiv_(identifier)
Lefort, A.; Russell, P.S.; Thomas, N. (2010). "Scalloped terrains in the Peneus and Amphitrites Paterae region of Mars as observed by HiRISE". Icarus. 205 (1): 259–268. Bibcode:2010Icar..205..259L. doi:10.1016/j.icarus.2009.06.005. /wiki/Bibcode_(identifier)
"Huge Underground Ice Deposit on Mars Is Bigger Than New Mexico". Space.com. November 22, 2016. Archived from the original on January 12, 2018. Retrieved November 29, 2016. http://www.space.com/34811-mars-ice-more-water-than-lake-superior.html
Staff (November 22, 2016). "Scalloped Terrain Led to Finding of Buried Ice on Mars". NASA. Archived from the original on November 24, 2016. Retrieved November 23, 2016. https://photojournal.jpl.nasa.gov/catalog/PIA21136
"Lake of frozen water the size of New Mexico found on Mars – NASA". The Register. November 22, 2016. Archived from the original on November 23, 2016. Retrieved November 23, 2016. https://www.theregister.co.uk/2016/11/22/nasa_finds_ice_under_martian_surface/
"Mars Ice Deposit Holds as Much Water as Lake Superior". NASA. November 22, 2016. Archived from the original on November 23, 2016. Retrieved November 23, 2016. https://www.jpl.nasa.gov/news/news.php?release=2016-299
Bramson, A, et al. (2015). "Widespread excess ice in Arcadia Planitia, Mars". Geophysical Research Letters 42, 6566–6574.
Stuurman, Cassie. "Widespread, Thick Water Ice found in Utopia Planitia, Mars". Archived from the original on November 30, 2016. Retrieved November 29, 2016. https://web.archive.org/web/20161130042608/https://planetarycassie.com/2016/11/04/widespread-thick-water-ice-found-in-utopia-planitia-mars/
Stuurman, C., et al. 2016. "SHARAD detection and characterization of subsurface water ice deposits in Utopia Planitia, Mars". Geophysical Research Letters 43, 9484–9491.
Byrne, S.; Ingersoll, A. P. (2002). "A Sublimation Model for the Formation of the Martian Polar Swiss-cheese Features". American Astronomical Society. 34: 837. Bibcode:2002DPS....34.0301B. /wiki/Bibcode_(identifier)
"Water ice in crater at Martian north pole" (Press release). ESA. July 27, 2005. Archived from the original on October 6, 2012. Retrieved October 8, 2009. http://www.esa.int/SPECIALS/Mars_Express/SEMGKA808BE_0.html
"Ice lake found on the Red Planet". BBC. July 29, 2005. Archived from the original on January 13, 2010. Retrieved October 8, 2009. http://news.bbc.co.uk/2/hi/science/nature/4727847.stm
Carr, Michael H. The Surface of Mars. Cambridge Planetary Science. Cambridge University Press. ISBN 978-0-511-26688-1. 978-0-511-26688-1
Cabrol, N.; Grin, E., eds. (2010). Lakes on Mars. New York: Elsevier.
Murray, John B.; et al. (2005). "Evidence from the Mars Express High Resolution Stereo Camera for a frozen sea close to Mars' equator". Nature. 434 (7031): 352–356. Bibcode:2005Natur.434..352M. doi:10.1038/nature03379. PMID 15772653. S2CID 4373323. Here we present High Resolution Stereo Camera images from the European Space Agency Mars Express spacecraft that indicate that such lakes may still exist. /wiki/Bibcode_(identifier)
Orosei, R.; Cartacci, M.; Cicchetti, A.; Federico, C.; Flamini, E.; Frigeri, A.; Holt, J. W.; Marinangeli, L.; Noschese, R.; Pettinelli, E.; Phillips, R. J.; Picardi, G.; Plaut, J. J.; Safaeinili, A.; Seu, R. (2007). "Radar Subsurface Sounding over the Putative Frozen Sea in Cerberus Palus, Mars". AGU Fall Meeting Abstracts. 2007. Bibcode:2007AGUFM.P14B..05O. /wiki/Bibcode_(identifier)
Orosei, R.; Cartacci, M.; Cicchetti, A.; Noschese, R.; Federico, C.; Frigeri, A.; Flamini, E.; Holt, J. W.; Marinangeli, L.; Pettinelli, E.; Phillips, R. J.; Picardi, G.; Seu, R.; Plaut, J. J. (2010). "Radar subsurface sounding over the putative frozen sea in Cerberus Palus, Mars" (PDF). Proceedings of the XIII Internarional Conference on Ground Penetrating Radar. pp. 1–4. doi:10.1109/ICGPR.2010.5550143. ISBN 978-1-4244-4604-9. Archived from the original (PDF) on March 27, 2009. 978-1-4244-4604-9
Barlow, Nadine G. (January 10, 2008). Mars: an introduction to its interior, surface and atmosphere. Cambridge University Press. ISBN 978-0-521-85226-5. 978-0-521-85226-5
Strom, R.G.; Croft, Steven K.; Barlow, Nadine G. (1992). The Martian Impact Cratering Record, Mars. University of Arizona Press. ISBN 978-0-8165-1257-7. 978-0-8165-1257-7
"ESA – Mars Express – Breathtaking views of Deuteronilus Mensae on Mars". Esa.int. March 14, 2005. Archived from the original on October 18, 2012. Retrieved October 9, 2009. http://www.esa.int/SPECIALS/Mars_Express/SEMBS5V681F_0.html
Holt, J. W.; Safaeinili, A.; Plaut, J. J.; Young, D. A.; Head, J. W.; Phillips, R. J.; Campbell, B. A.; Carter, L. M.; Gim, Y.; Seu, R.; Team, Sharad (2008). "Radar Sounding Evidence for Ice within Lobate Debris Aprons near Hellas Basin, Mid-Southern Latitudes of Mars" (PDF). Lunar and Planetary Science. XXXIX (1391): 2441. Bibcode:2008LPI....39.2441H. Archived (PDF) from the original on June 11, 2016. Retrieved December 19, 2010. http://www.lpi.usra.edu/meetings/lpsc2008/pdf/2441.pdf
Plaut, Jeffrey J.; Safaeinili, Ali; Holt, John W.; Phillips, Roger J.; Head, James W.; Seu, Roberto; Putzig, Nathaniel E.; Frigeri, Alessandro (2009). "Radar Evidence for Ice in Lobate Debris Aprons in the Mid-Northern Latitudes of Mars" (PDF). Geophysical Research Letters. 36 (2): n/a. Bibcode:2009GeoRL..36.2203P. doi:10.1029/2008GL036379. S2CID 17530607. Archived from the original (PDF) on January 23, 2021. Retrieved April 4, 2010. https://web.archive.org/web/20210123201616/http://www.planetary.brown.edu/pdfs/3733.pdf
Plaut, Jeffrey J.; Safaeinili, Ali; Holt, John W.; Phillips, Roger J.; Head, James W.; Seu, Roberto; Putzig, Nathaniel E.; Frigeri, Alessandro (2009). "Radar Evidence for Ice in Lobate Debris Aprons in the Mid-Northern Latitudes of Mars" (PDF). Geophysical Research Letters. 36 (2): n/a. Bibcode:2009GeoRL..36.2203P. doi:10.1029/2008GL036379. S2CID 17530607. Archived from the original (PDF) on January 23, 2021. Retrieved April 4, 2010. https://web.archive.org/web/20210123201616/http://www.planetary.brown.edu/pdfs/3733.pdf
Hauber, E.; et al. (2005). "Discovery of a flank caldera and very young glacial activity at Hecates Tholus, Mars". Nature. 434 (7031): 356–61. Bibcode:2005Natur.434..356H. doi:10.1038/nature03423. PMID 15772654. S2CID 4427179. /wiki/Bibcode_(identifier)
Shean, David E.; Head, James W.; Fastook, James L.; Marchant, David R. (2007). "Recent glaciation at high elevations on Arsia Mons, Mars: Implications for the formation and evolution of large tropical mountain glaciers". Journal of Geophysical Research. 112 (E3): E03004. Bibcode:2007JGRE..112.3004S. doi:10.1029/2006JE002761. https://doi.org/10.1029%2F2006JE002761
Shean, D.; et al. (2005). "Origin and evolution of a cold-based mountain glacier on Mars: The Pavonis Mons fan-shaped deposit". Journal of Geophysical Research. 110 (E5): E05001. Bibcode:2005JGRE..110.5001S. doi:10.1029/2004JE002360. S2CID 14749707. https://doi.org/10.1029%2F2004JE002360
Basilevsky, A.; et al. (2006). "Geological recent tectonic, volcanic and fluvial activity on the eastern flank of the Olympus Mons volcano, Mars". Geophysical Research Letters. 33 (13). L13201. Bibcode:2006GeoRL..3313201B. CiteSeerX 10.1.1.485.770. doi:10.1029/2006GL026396. S2CID 16847310. /wiki/Bibcode_(identifier)
Milliken, R.; et al. (2003). "Viscous flow features on the surface of Mars: Observations from high-resolution Mars Orbiter Camera (MOC) images". Journal of Geophysical Research. 108 (E6): 5057. Bibcode:2003JGRE..108.5057M. doi:10.1029/2002je002005. S2CID 12628857. /wiki/Bibcode_(identifier)
Plaut, Jeffrey J.; Safaeinili, Ali; Holt, John W.; Phillips, Roger J.; Head, James W.; Seu, Roberto; Putzig, Nathaniel E.; Frigeri, Alessandro (2009). "Radar Evidence for Ice in Lobate Debris Aprons in the Mid-Northern Latitudes of Mars" (PDF). Geophysical Research Letters. 36 (2): n/a. Bibcode:2009GeoRL..36.2203P. doi:10.1029/2008GL036379. S2CID 17530607. Archived from the original (PDF) on January 23, 2021. Retrieved April 4, 2010. https://web.archive.org/web/20210123201616/http://www.planetary.brown.edu/pdfs/3733.pdf
Head, J.; Marchant, D. (2006). "Modifications of the walls of a Noachian crater in Northern Arabia Terra (24 E, 39 N) during northern mid-latitude Amazonian glacial epochs on Mars: Nature and evolution of Lobate Debris Aprons and their relationships to lineated valley fill and glacial systems (abstract)". Lunar and Planetary Science. 37: 1128.
Arfstrom, J.; Hartmann, W. (2005). "Martian flow features, moraine-like ridges, and gullies: Terrestrial analogs and interrelationships". Icarus. 174 (2): 321–35. Bibcode:2005Icar..174..321A. doi:10.1016/j.icarus.2004.05.026. /wiki/Bibcode_(identifier)
Holt, J. W.; Safaeinili, A.; Plaut, J. J.; Young, D. A.; Head, J. W.; Phillips, R. J.; Campbell, B. A.; Carter, L. M.; Gim, Y.; Seu, R.; Team, Sharad (2008). "Radar Sounding Evidence for Ice within Lobate Debris Aprons near Hellas Basin, Mid-Southern Latitudes of Mars" (PDF). Lunar and Planetary Science. XXXIX (1391): 2441. Bibcode:2008LPI....39.2441H. Archived (PDF) from the original on June 11, 2016. Retrieved December 19, 2010. http://www.lpi.usra.edu/meetings/lpsc2008/pdf/2441.pdf
Plaut, Jeffrey J.; Safaeinili, Ali; Holt, John W.; Phillips, Roger J.; Head, James W.; Seu, Roberto; Putzig, Nathaniel E.; Frigeri, Alessandro (2009). "Radar Evidence for Ice in Lobate Debris Aprons in the Mid-Northern Latitudes of Mars" (PDF). Geophysical Research Letters. 36 (2): n/a. Bibcode:2009GeoRL..36.2203P. doi:10.1029/2008GL036379. S2CID 17530607. Archived from the original (PDF) on January 23, 2021. Retrieved April 4, 2010. https://web.archive.org/web/20210123201616/http://www.planetary.brown.edu/pdfs/3733.pdf
Lewis, Richard (April 23, 2008). "Glaciers Reveal Martian Climate Has Been Recently Active". Brown University. Archived from the original on October 12, 2013. Retrieved October 12, 2009. http://news.brown.edu/pressreleases/2008/04/martian-glaciers
Head, J. W.; Neukum, G.; Jaumann, R.; Hiesinger, H.; Hauber, E.; Carr, M.; Masson, P.; Foing, B.; Hoffmann, H.; Kreslavsky, M.; Werner, S.; Milkovich, S.; van Gasselt, S.; HRSC Co-Investigator Team (2005). "Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars". Nature. 434 (7031): 346–350. Bibcode:2005Natur.434..346H. doi:10.1038/nature03359. PMID 15772652. S2CID 4363630. /wiki/Bibcode_(identifier)
Staff (October 17, 2005). "Mars' climate in flux: Mid-latitude glaciers". Marstoday. Brown University. Archived from the original on June 18, 2013. https://archive.today/20130618031257/http://www.spaceref.com/news/viewpr.html?pid=18050
Holt, J. W.; Safaeinili, A.; Plaut, J. J.; Young, D. A.; Head, J. W.; Phillips, R. J.; Campbell, B. A.; Carter, L. M.; Gim, Y.; Seu, R.; Team, Sharad (2008). "Radar Sounding Evidence for Ice within Lobate Debris Aprons near Hellas Basin, Mid-Southern Latitudes of Mars" (PDF). Lunar and Planetary Science. XXXIX (1391): 2441. Bibcode:2008LPI....39.2441H. Archived (PDF) from the original on June 11, 2016. Retrieved December 19, 2010. http://www.lpi.usra.edu/meetings/lpsc2008/pdf/2441.pdf
Plaut, Jeffrey J.; Safaeinili, Ali; Holt, John W.; Phillips, Roger J.; Head, James W.; Seu, Roberto; Putzig, Nathaniel E.; Frigeri, Alessandro (2009). "Radar Evidence for Ice in Lobate Debris Aprons in the Mid-Northern Latitudes of Mars" (PDF). Geophysical Research Letters. 36 (2): n/a. Bibcode:2009GeoRL..36.2203P. doi:10.1029/2008GL036379. S2CID 17530607. Archived from the original (PDF) on January 23, 2021. Retrieved April 4, 2010. https://web.archive.org/web/20210123201616/http://www.planetary.brown.edu/pdfs/3733.pdf
Berman, D.; et al. (2005). "The role of arcuate ridges and gullies in the degradation of craters in the Newton Basin region of Mars". Icarus. 178 (2): 465–86. Bibcode:2005Icar..178..465B. doi:10.1016/j.icarus.2005.05.011. /wiki/Bibcode_(identifier)
Carr, Michael H. The Surface of Mars. Cambridge Planetary Science. Cambridge University Press. ISBN 978-0-511-26688-1. 978-0-511-26688-1
"Fretted Terrain Valley Traverse". Hirise.lpl.arizona.edu. Archived from the original on October 13, 2017. Retrieved January 16, 2012. http://hirise.lpl.arizona.edu/PSP_009719_2230
"Jumbled Flow Patterns". Arizona University. Archived from the original on August 23, 2016. Retrieved January 16, 2012. http://hirise.lpl.arizona.edu/PSP_006278_2225
Carr, Michael H. The Surface of Mars. Cambridge Planetary Science. Cambridge University Press. ISBN 978-0-511-26688-1. 978-0-511-26688-1
"Reservoir of liquid water found deep in Martian rocks". www.bbc.com. August 12, 2024. Retrieved August 16, 2024. https://www.bbc.com/news/articles/czxl849j77ko
Strickland, Ashley (August 12, 2024). "Oceans of water may be trapped deep beneath the Martian surface". CNN. Retrieved August 16, 2024. https://edition.cnn.com/2024/08/12/science/mars-crust-water-reservoir-insight/index.html
Wright, Vashan; Morzfeld, Matthias; Manga, Michael (2024). "Liquid water in the Martian mid-crust". Proceedings of the National Academy of Sciences. 121 (35): e2409983121. Bibcode:2024PNAS..12109983W. doi:10.1073/pnas.2409983121. PMC 11363344. PMID 39133865. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363344
Strickland, Ashley (August 12, 2024). "Oceans of water may be trapped deep beneath the Martian surface". CNN. Retrieved August 16, 2024. https://edition.cnn.com/2024/08/12/science/mars-crust-water-reservoir-insight/index.html
"New Study Challenges Long-Held Theory of Fate of Mars' Water - NASA". March 16, 2021. https://www.nasa.gov/missions/new-study-challenges-long-held-theory-of-fate-of-mars-water
Kostama, V.-P.; Kreslavsky, M. A.; Head, J. W. (June 3, 2006). "Recent high-latitude icy mantle in the northern plains of Mars: Characteristics and ages of emplacement". Geophysical Research Letters. 33 (11): L11201. Bibcode:2006GeoRL..3311201K. CiteSeerX 10.1.1.553.1127. doi:10.1029/2006GL025946. S2CID 17229252. Archived from the original on March 18, 2009. Retrieved October 8, 2009. https://web.archive.org/web/20090318010946/http://www.agu.org/pubs/crossref/2006/2006GL025946.shtml
Heldmann, Jennifer L.; et al. (May 7, 2005). "Formation of Martian gullies by the action of liquid water flowing under current Martian environmental conditions" (PDF). Journal of Geophysical Research. 110 (E5): Eo5004. Bibcode:2005JGRE..110.5004H. doi:10.1029/2004JE002261. hdl:2060/20050169988. S2CID 1578727. Archived from the original (PDF) on October 1, 2008. Retrieved October 8, 2009. 'conditions such as now occur on Mars, outside of the temperature-pressure stability regime of liquid water' … 'Liquid water is typically stable at the lowest elevations and at low latitudes on the planet, because the atmospheric pressure is greater than the vapor pressure of water and surface temperatures in equatorial regions can reach 220 K (−53 °C; −64 °F) for parts of the day. https://web.archive.org/web/20081001162643/http://daleandersen.seti.org/Dale_Andersen/Science_articles_files/Heldmann%20et%20al.2005.pdf
Malin, Michael C.; Edgett, Kenneth S.; Posiolova, Liliya V.; McColley, Shawn M.; Dobrea, Eldar Z. Noe (December 8, 2006). "Present-Day Impact Cratering Rate and Contemporary Gully Activity on Mars". Science. 314 (5805): 1573–1577. Bibcode:2006Sci...314.1573M. doi:10.1126/science.1135156. PMID 17158321. S2CID 39225477. /wiki/Bibcode_(identifier)
Head, J. W.; Marchant, D. R; Kreslavsky, M. A. (2008). "Formation of gullies on Mars: Link to recent climate history and insolation microenvironments implicate surface water flow origin". PNAS. 105 (36): 13258–13263. Bibcode:2008PNAS..10513258H. doi:10.1073/pnas.0803760105. PMC 2734344. PMID 18725636. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2734344
Malin, Michael C.; Edgett, Kenneth S.; Posiolova, Liliya V.; McColley, Shawn M.; Dobrea, Eldar Z. Noe (December 8, 2006). "Present-Day Impact Cratering Rate and Contemporary Gully Activity on Mars". Science. 314 (5805): 1573–1577. Bibcode:2006Sci...314.1573M. doi:10.1126/science.1135156. PMID 17158321. S2CID 39225477. /wiki/Bibcode_(identifier)
Henderson, Mark (December 7, 2006). "Water has been flowing on Mars within past five years, Nasa says". The Times. London. Archived from the original on April 22, 2023. Retrieved June 6, 2022. https://www.thetimes.com/uk/science/article/water-has-been-flowing-on-mars-within-past-five-years-nasa-says-srm2hk5hxd0
Malin, Michael C.; Edgett, Kenneth S. (2000). "Evidence for Recent Groundwater Seepage and Surface Runoff on Mars". Science. 288 (5475): 2330–2335. Bibcode:2000Sci...288.2330M. doi:10.1126/science.288.5475.2330. PMID 10875910. S2CID 14232446. /wiki/Bibcode_(identifier)
Christensen, Philip R. (February 19, 2003). "Formation of recent martian gullies through melting of extensive water-rich snow deposits". Nature. 422 (6927): 45–48. Bibcode:2003Natur.422...45C. doi:10.1038/nature01436. ISSN 0028-0836. PMID 12594459. Archived from the original on June 11, 2024. Retrieved April 11, 2024. https://dx.doi.org/10.1038/nature01436
Rai Khuller, Aditya; Russel Christensen, Philip (February 2021). "Evidence of Exposed Dusty Water Ice within Martian Gullies". Journal of Geophysical Research: Planets. 126 (2). Bibcode:2021JGRE..12606539R. doi:10.1029/2020je006539. ISSN 2169-9097. Archived from the original on June 11, 2024. Retrieved April 11, 2024. https://dx.doi.org/10.1029/2020je006539
Dickson, J. L.; Palumbo, A. M.; Head, J. W.; Kerber, L.; Fassett, C. I.; Kreslavsky, M. A. (2023). "Gullies on Mars could have formed by melting of water ice during periods of high obliquity". Science. 380 (6652): 1363–1367. Bibcode:2023Sci...380.1363D. doi:10.1126/science.abk2464. PMID 37384686. S2CID 259287608. https://doi.org/10.1126%2Fscience.abk2464
Dundas, Colin M.; McEwen, Alfred S.; Diniega, Serina; Hansen, Candice J.; Byrne, Shane; McElwaine, Jim N. (November 27, 2017). "The formation of gullies on Mars today". Geological Society, London, Special Publications. 467 (1): 67–94. doi:10.1144/sp467.5. hdl:10150/633371. ISSN 0305-8719. https://dx.doi.org/10.1144/sp467.5
Wilson, Jack T.; et al. (January 2018). "Equatorial locations of water on Mars: Improved resolution maps based on Mars Odyssey Neutron Spectrometer data". Icarus. 299: 148–160. arXiv:1708.00518. Bibcode:2018Icar..299..148W. doi:10.1016/j.icarus.2017.07.028. S2CID 59520156. /wiki/Icarus_(journal)
Kolb, K.; Pelletier, Jon D.; McEwen, Alfred S. (2010). "Modeling the formation of bright slope deposits associated with gullies in Hale Crater, Mars: Implications for recent liquid water". Icarus. 205 (1): 113–137. Bibcode:2010Icar..205..113K. doi:10.1016/j.icarus.2009.09.009. /wiki/Bibcode_(identifier)
Hoffman, Nick (2002). "Active polar gullies on Mars and the role of carbon dioxide". Astrobiology. 2 (3): 313–323. Bibcode:2002AsBio...2..313H. doi:10.1089/153110702762027899. PMID 12530241. /wiki/Bibcode_(identifier)
Musselwhite, Donald S.; Swindle, Timothy D.; Lunine, Jonathan I. (2001). "Liquid CO2 breakout and the formation of recent small gullies on Mars". Geophysical Research Letters. 28 (7): 1283–1285. Bibcode:2001GeoRL..28.1283M. doi:10.1029/2000gl012496. https://doi.org/10.1029%2F2000gl012496
McEwen, Alfred. S.; Ojha, Lujendra; Dundas, Colin M. (June 17, 2011). "Seasonal Flows on Warm Martian Slopes". Science. 333 (6043). American Association for the Advancement of Science: 740–743. Bibcode:2011Sci...333..740M. doi:10.1126/science.1204816. ISSN 0036-8075. PMID 21817049. S2CID 10460581. /wiki/Bibcode_(identifier)
Webster, Guy; Brown, Dwayne (December 10, 2013). "NASA Mars Spacecraft Reveals a More Dynamic Red Planet". NASA. Archived from the original on December 14, 2013. Retrieved December 11, 2013. https://www.jpl.nasa.gov/news/news.php?release=2013-361&1#1
"NASA Spacecraft Data Suggest Water Flowing on Mars". NASA. August 4, 2011. Archived from the original on March 4, 2016. Retrieved August 4, 2011. https://web.archive.org/web/20160304075750/http://www.nasa.gov/mission_pages/MRO/news/mro20110804.html
McEwen, Alfred; Lujendra, Ojha; Dundas, Colin; Mattson, Sarah; Bryne, S; Wray, J.; Cull, Selby; Murchie, Scott; Thomas, Nicholas; Gulick, Virginia (August 5, 2011). "Seasonal Flows On Warm Martian Slopes". Science. 333 (6043): 743. Bibcode:2011Sci...333..740M. doi:10.1126/science.1204816. PMID 21817049. S2CID 10460581. /wiki/Bibcode_(identifier)
Drake, Nadia (September 28, 2015). "NASA Finds 'Definitive' Liquid Water on Mars". National Geographic News. Archived from the original on September 30, 2015. Retrieved September 30, 2015. /wiki/Nadia_Drake
Moskowitz, Clara. "Water Flows on Mars Today, NASA Announces". Scientific American. Archived from the original on May 15, 2021. Retrieved September 30, 2015. http://www.scientificamerican.com/article/water-flows-on-mars-today-nasa-announces/
Ojha, L.; Wilhelm, M. B.; Murchie, S. L.; McEwen, A. S.; Wray, J. J.; Hanley, J.; Massé, M.; Chojnacki, M. (2015). "Spectral evidence for hydrated salts in recurring slope lineae on Mars". Nature Geoscience. 8 (11): 829–832. Bibcode:2015NatGe...8..829O. doi:10.1038/ngeo2546. S2CID 59152931. /wiki/Bibcode_(identifier)
"NASA News Conference: Evidence of Liquid Water on Today's Mars". NASA. September 28, 2015. Archived from the original on October 1, 2015. Retrieved September 30, 2015. https://www.youtube.com/watch?v=bDv4FRHI3J8
"NASA Confirms Evidence That Liquid Water Flows on Today's Mars". September 28, 2015. Archived from the original on January 4, 2022. Retrieved September 30, 2015. https://www.nasa.gov/press-release/nasa-confirms-evidence-that-liquid-water-flows-on-today-s-mars/
Wilson, Jack T.; et al. (January 2018). "Equatorial locations of water on Mars: Improved resolution maps based on Mars Odyssey Neutron Spectrometer data". Icarus. 299: 148–160. arXiv:1708.00518. Bibcode:2018Icar..299..148W. doi:10.1016/j.icarus.2017.07.028. S2CID 59520156. /wiki/Icarus_(journal)
"Recurring Martian Streaks: Flowing Sand, Not Water?". JPL NASA News. Jet Propulsion Laboratory, NASA. November 20, 2017. Archived from the original on November 9, 2020. Retrieved December 18, 2017. https://www.jpl.nasa.gov/news/news.php?release=2017-299
Schmidt, Frédéric; Andrieu, François; Costard, François; Kocifaj, Miroslav; Meresescu, Alina G. (2017). "Formation of recurring slope lineae on Mars by rarefied gas-triggered granular flows". Nature Geoscience. 10 (4): 270–273. arXiv:1802.05018. Bibcode:2017NatGe..10..270S. doi:10.1038/ngeo2917. S2CID 55016186. /wiki/ArXiv_(identifier)
Whiteway, J. A.; Komguem, L.; Dickinson, C.; Cook, C.; Illnicki, M.; Seabrook, J.; Popovici, V.; Duck, T. J.; Davy, R.; Taylor, P. A.; Pathak, J.; Fisher, D.; Carswell, A. I.; Daly, M.; Hipkin, V.; Zent, A. P.; Hecht, M. H.; Wood, S. E.; Tamppari, L. K.; Renno, N.; Moores, J. E.; Lemmon, M. T.; Daerden, F.; Smith, P. H. (2009). "Mars Water-Ice Clouds and Precipitation". Science. 325 (5936): 68–70. Bibcode:2009Sci...325...68W. doi:10.1126/science.1172344. PMID 19574386. S2CID 206519222. /wiki/Bibcode_(identifier)
*Head, J., et al. 2023. GEOLOGICAL AND CLIMATE HISTORY OF MARS: IDENTIFICATION OF POTENTIAL WARM AND
WET CLIMATE 'FALSE POSITIVES'. 54th Lunar and Planetary Science Conference 2023 (LPI Contrib. No. 2806). 1731.pdf
Hautaluoma, Grey; Johnson, Alana; Good, Andrew (March 16, 2021). "New Study Challenges Long-Held Theory of Fate of Mars' Water". NASA. Archived from the original on October 11, 2021. Retrieved March 16, 2021. https://www.jpl.nasa.gov/news/new-study-challenges-long-held-theory-of-fate-of-mars-water
Mack, Eric (March 16, 2021). "Mars hides an ancient ocean beneath its surface". CNET. Archived from the original on March 17, 2021. Retrieved March 16, 2021. https://www.cnet.com/news/mars-hides-an-ancient-ocean-beneath-its-surface/
Scheller, E. L.; et al. (March 16, 2021). "Long-term drying of Mars by sequestration of ocean-scale volumes of water in the crust". Science. 372 (6537): 56–62. Bibcode:2021Sci...372...56S. doi:10.1126/science.abc7717. PMC 8370096. PMID 33727251. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8370096
Chang, Kenneth (March 19, 2021). "The Water on Mars Vanished. This Might Be Where It Went". The New York Times. Archived from the original on November 24, 2021. Retrieved March 19, 2021. https://www.nytimes.com/2021/03/19/science/mars-water-missing.html
Jakosky, B. M.; Phillips, R. J. (2001). "Mars' volatile and climate history". Nature. 412 (6843): 237–244. Bibcode:2001Natur.412..237J. doi:10.1038/35084184. PMID 11449285. https://doi.org/10.1038%2F35084184
Jakosky, B. M.; Phillips, R. J. (2001). "Mars' volatile and climate history". Nature. 412 (6843): 237–244. Bibcode:2001Natur.412..237J. doi:10.1038/35084184. PMID 11449285. https://doi.org/10.1038%2F35084184
Chaufray, J. Y.; et al. (2007). "Mars solar wind interaction: Formation of the Martian corona and atmospheric loss to space" (PDF). Journal of Geophysical Research. 112 (E9): E09009. Bibcode:2007JGRE..112.9009C. doi:10.1029/2007JE002915. Archived (PDF) from the original on November 29, 2021. Retrieved November 22, 2019. https://hal.archives-ouvertes.fr/hal-00186346/file/Chaufray_et_al-2007-Journal_of_Geophysical_Research__Planets_%281991-2012%29.pdf
Chevrier, V.; et al. (2007). "Early geochemical environment of Mars as determined from thermodynamics of phyllosilicates". Nature. 448 (7149): 60–63. Bibcode:2007Natur.448...60C. doi:10.1038/nature05961. PMID 17611538. S2CID 1595292. /wiki/Bibcode_(identifier)
Chevrier, V.; et al. (2007). "Early geochemical environment of Mars as determined from thermodynamics of phyllosilicates". Nature. 448 (7149): 60–63. Bibcode:2007Natur.448...60C. doi:10.1038/nature05961. PMID 17611538. S2CID 1595292. /wiki/Bibcode_(identifier)
Catling, D. C. (2007). "Mars: Ancient fingerprints in the clay". Nature. 448 (7149): 31–32. Bibcode:2007Natur.448...31C. doi:10.1038/448031a. PMID 17611529. S2CID 4387261. /wiki/Bibcode_(identifier)
Catling, D. C. (2007). "Mars: Ancient fingerprints in the clay". Nature. 448 (7149): 31–32. Bibcode:2007Natur.448...31C. doi:10.1038/448031a. PMID 17611529. S2CID 4387261. /wiki/Bibcode_(identifier)
Catling, D. C. (2007). "Mars: Ancient fingerprints in the clay". Nature. 448 (7149): 31–32. Bibcode:2007Natur.448...31C. doi:10.1038/448031a. PMID 17611529. S2CID 4387261. /wiki/Bibcode_(identifier)
Jakosky, B. M.; Phillips, R. J. (2001). "Mars' volatile and climate history". Nature. 412 (6843): 237–244. Bibcode:2001Natur.412..237J. doi:10.1038/35084184. PMID 11449285. https://doi.org/10.1038%2F35084184
Chaufray, J. Y.; et al. (2007). "Mars solar wind interaction: Formation of the Martian corona and atmospheric loss to space" (PDF). Journal of Geophysical Research. 112 (E9): E09009. Bibcode:2007JGRE..112.9009C. doi:10.1029/2007JE002915. Archived (PDF) from the original on November 29, 2021. Retrieved November 22, 2019. https://hal.archives-ouvertes.fr/hal-00186346/file/Chaufray_et_al-2007-Journal_of_Geophysical_Research__Planets_%281991-2012%29.pdf
Jakosky, B. M.; Phillips, R. J. (2001). "Mars' volatile and climate history". Nature. 412 (6843): 237–244. Bibcode:2001Natur.412..237J. doi:10.1038/35084184. PMID 11449285. https://doi.org/10.1038%2F35084184
Jakosky, B. M.; Phillips, R. J. (2001). "Mars' volatile and climate history". Nature. 412 (6843): 237–244. Bibcode:2001Natur.412..237J. doi:10.1038/35084184. PMID 11449285. https://doi.org/10.1038%2F35084184
Chaufray, J. Y.; et al. (2007). "Mars solar wind interaction: Formation of the Martian corona and atmospheric loss to space" (PDF). Journal of Geophysical Research. 112 (E9): E09009. Bibcode:2007JGRE..112.9009C. doi:10.1029/2007JE002915. Archived (PDF) from the original on November 29, 2021. Retrieved November 22, 2019. https://hal.archives-ouvertes.fr/hal-00186346/file/Chaufray_et_al-2007-Journal_of_Geophysical_Research__Planets_%281991-2012%29.pdf
Jakosky, B. M.; Phillips, R. J. (2001). "Mars' volatile and climate history". Nature. 412 (6843): 237–244. Bibcode:2001Natur.412..237J. doi:10.1038/35084184. PMID 11449285. https://doi.org/10.1038%2F35084184
Jakosky, B. M.; Phillips, R. J. (2001). "Mars' volatile and climate history". Nature. 412 (6843): 237–244. Bibcode:2001Natur.412..237J. doi:10.1038/35084184. PMID 11449285. https://doi.org/10.1038%2F35084184
Chaufray, J. Y.; et al. (2007). "Mars solar wind interaction: Formation of the Martian corona and atmospheric loss to space" (PDF). Journal of Geophysical Research. 112 (E9): E09009. Bibcode:2007JGRE..112.9009C. doi:10.1029/2007JE002915. Archived (PDF) from the original on November 29, 2021. Retrieved November 22, 2019. https://hal.archives-ouvertes.fr/hal-00186346/file/Chaufray_et_al-2007-Journal_of_Geophysical_Research__Planets_%281991-2012%29.pdf
Jakosky, B. M.; Phillips, R. J. (2001). "Mars' volatile and climate history". Nature. 412 (6843): 237–244. Bibcode:2001Natur.412..237J. doi:10.1038/35084184. PMID 11449285. https://doi.org/10.1038%2F35084184
Andrews-Hanna, J. C.; et al. (2007). "Meridiani Planum and the global hydrology of Mars". Nature. 446 (7132): 163–6. Bibcode:2007Natur.446..163A. doi:10.1038/nature05594. PMID 17344848. S2CID 4428510. /wiki/Bibcode_(identifier)
Chaufray, J. Y.; et al. (2007). "Mars solar wind interaction: Formation of the Martian corona and atmospheric loss to space" (PDF). Journal of Geophysical Research. 112 (E9): E09009. Bibcode:2007JGRE..112.9009C. doi:10.1029/2007JE002915. Archived (PDF) from the original on November 29, 2021. Retrieved November 22, 2019. https://hal.archives-ouvertes.fr/hal-00186346/file/Chaufray_et_al-2007-Journal_of_Geophysical_Research__Planets_%281991-2012%29.pdf
Morris, R. V.; et al. (2001). "Phyllosilicate-poor palagonitic dust from Mauna Kea Volcano (Hawaii): A mineralogical analogue for magnetic Martian dust?". Journal of Geophysical Research. 106 (E3): 5057–5083. Bibcode:2001JGR...106.5057M. doi:10.1029/2000JE001328. https://doi.org/10.1029%2F2000JE001328
Chevrier, V.; et al. (2006). "Iron weathering products in a CO2+(H2O or H2O2) atmosphere: Implications for weathering processes on the surface of Mars" (PDF). Geochimica et Cosmochimica Acta. 70 (16): 4295–4317. Bibcode:2006GeCoA..70.4295C. doi:10.1016/j.gca.2006.06.1368. Archived (PDF) from the original on July 13, 2022. Retrieved June 23, 2022. https://hal.archives-ouvertes.fr/hal-01872279/file/Chevrier%20-%202006%20-%20GCA%20-%20experimental%20weathering%20in%20CO2%20%2B%20H2O.pdf
Chevrier, V.; et al. (2007). "Early geochemical environment of Mars as determined from thermodynamics of phyllosilicates". Nature. 448 (7149): 60–63. Bibcode:2007Natur.448...60C. doi:10.1038/nature05961. PMID 17611538. S2CID 1595292. /wiki/Bibcode_(identifier)
Bibring, J-P.; et al. (2006). "Global mineralogical and aqueous mars history derived from OMEGA/Mars Express data". Science. 312 (5772): 400–4. Bibcode:2006Sci...312..400B. doi:10.1126/science.1122659. PMID 16627738. https://doi.org/10.1126%2Fscience.1122659
McEwen, A. S.; et al. (2007). "A Closer Look at Water-Related Geologic Activity on Mars". Science. 317 (5845): 1706–1709. Bibcode:2007Sci...317.1706M. doi:10.1126/science.1143987. PMID 17885125. S2CID 44822691. /wiki/Bibcode_(identifier)
Jakosky, B. M.; Phillips, R. J. (2001). "Mars' volatile and climate history". Nature. 412 (6843): 237–244. Bibcode:2001Natur.412..237J. doi:10.1038/35084184. PMID 11449285. https://doi.org/10.1038%2F35084184
"Escape from Mars: How water fled the red planet". phys.org. Archived from the original on October 9, 2021. Retrieved December 8, 2020. https://phys.org/news/2020-11-mars-fled-red-planet.html
Stone, Shane W.; Yelle, Roger V.; Benna, Mehdi; Lo, Daniel Y.; Elrod, Meredith K.; Mahaffy, Paul R. (November 13, 2020). "Hydrogen escape from Mars is driven by seasonal and dust storm transport of water". Science. 370 (6518): 824–831. Bibcode:2020Sci...370..824S. doi:10.1126/science.aba5229. ISSN 0036-8075. PMID 33184209. S2CID 226308137. Archived from the original on September 16, 2022. Retrieved December 8, 2020. https://www.science.org/doi/10.1126/science.aba5229
Yiğit, Erdal (December 10, 2021). "Martian water escape and internal waves". Science. 374 (6573): 1323–1324. Bibcode:2021Sci...374.1323Y. doi:10.1126/science.abg5893. ISSN 0036-8075. PMID 34882460. S2CID 245012567. Archived from the original on December 16, 2021. Retrieved December 16, 2021. https://www.science.org/doi/10.1126/science.abg5893
Yiğit, Erdal; Medvedev, Alexander S.; Benna, Mehdi; Jakosky, Bruce M. (March 16, 2021). "Dust Storm-Enhanced Gravity Wave Activity in the Martian Thermosphere Observed by MAVEN and Implication for Atmospheric Escape". Geophysical Research Letters. 48 (5). arXiv:2101.07698. Bibcode:2021GeoRL..4892095Y. doi:10.1029/2020GL092095. ISSN 0094-8276. S2CID 234356651. Archived from the original on June 11, 2024. Retrieved December 16, 2021. https://onlinelibrary.wiley.com/doi/10.1029/2020GL092095
Schorghofer, Norbert (2007). "Dynamics of ice ages on Mars" (PDF). Nature. 449 (7159): 192–194. Bibcode:2007Natur.449..192S. doi:10.1038/nature06082. PMID 17851518. S2CID 4415456. Archived from the original (PDF) on January 13, 2018. Retrieved January 12, 2018. https://web.archive.org/web/20180113121555/http://depts.washington.edu/marsweb/papers/PDFs/Schorghofer-2007-Mars-ice-ages.pdf
Shean, D.; et al. (2005). "Origin and evolution of a cold-based mountain glacier on Mars: The Pavonis Mons fan-shaped deposit". Journal of Geophysical Research. 110 (E5): E05001. Bibcode:2005JGRE..110.5001S. doi:10.1029/2004JE002360. S2CID 14749707. https://doi.org/10.1029%2F2004JE002360
Dickson, James L.; Head, James W.; Marchant, David R. (2008). "Late Amazonian glaciation at the dichotomy boundary on Mars: Evidence for glacial thickness maxima and multiple glacial phases". Geology. 36 (5): 411–4. Bibcode:2008Geo....36..411D. doi:10.1130/G24382A.1. S2CID 14291132. /wiki/Geology_(journal)
Head, J. W.; III; Mustard, J. F.; Kreslavsky, M. A.; Milliken, R. E.; Marchant, D. R. (2003). "Recent ice ages on Mars". Nature. 426 (6968): 797–802. Bibcode:2003Natur.426..797H. doi:10.1038/nature02114. PMID 14685228. S2CID 2355534. /wiki/Bibcode_(identifier)
Smith, Isaac B.; Putzig, Nathaniel E.; Holt, John W.; Phillips, Roger J. (May 27, 2016). "An ice age recorded in the polar deposits of Mars". Science. 352 (6289): 1075–1078. Bibcode:2016Sci...352.1075S. doi:10.1126/science.aad6968. PMID 27230372. https://doi.org/10.1126%2Fscience.aad6968
"HiRISE Dissected Mantled Terrain (PSP_002917_2175)". Arizona University. Archived from the original on August 21, 2017. Retrieved December 19, 2010. http://hirise.lpl.arizona.edu/PSP_002917_2175
Levrard, B.; Forget, F.; Montmessian, F.; Laskar, J. (2004). "Recent ice-rich deposits formed at high latitudes on Mars by sublimation of unstable equatorial ice during low obliquity". Nature. 431 (7012): 1072–1075. Bibcode:2004Natur.431.1072L. doi:10.1038/nature03055. PMID 15510141. S2CID 4420650. /wiki/Bibcode_(identifier)
"Mars may be emerging from an ice age". ScienceDaily. MLA NASA/Jet Propulsion Laboratory. December 18, 2003. https://www.sciencedaily.com/releases/2003/12/031218075443.htm
Forget, F.; et al. (2006). "Formation of Glaciers on Mars by Atmospheric Precipitation at High Obliquity". Science. 311 (5759): 368–71. Bibcode:2006Sci...311..368F. doi:10.1126/science.1120335. PMID 16424337. S2CID 5798774. /wiki/Bibcode_(identifier)
"Mars may be emerging from an ice age". ScienceDaily. MLA NASA/Jet Propulsion Laboratory. December 18, 2003. https://www.sciencedaily.com/releases/2003/12/031218075443.htm
Christensen, Philip R. (March 2003). "Formation of recent martian gullies through melting of extensive water-rich snow deposits". Nature. 422 (6927): 45–48. Bibcode:2003Natur.422...45C. doi:10.1038/nature01436. ISSN 1476-4687. PMID 12594459. S2CID 4385806. Archived from the original on August 9, 2021. Retrieved July 27, 2022. https://www.nature.com/articles/nature01436
Head, James W.; Mustard, John F.; Kreslavsky, Mikhail A.; Milliken, Ralph E.; Marchant, David R. (2003). "Recent ice ages on Mars". Nature. 426 (6968): 797–802. Bibcode:2003Natur.426..797H. doi:10.1038/nature02114. PMID 14685228. S2CID 2355534. /wiki/Bibcode_(identifier)
Mustard, J.; et al. (2001). "Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice". Nature. 412 (6845): 411–4. Bibcode:2001Natur.412..411M. doi:10.1038/35086515. PMID 11473309. S2CID 4409161. /wiki/Bibcode_(identifier)
Kreslavsky, M.; Head, J. (2002). "Mars: Nature and evolution of young latitude-dependent water-ice-rich mantle". Geophysical Research Letters. 29 (15): 14–1–14–4. Bibcode:2002GeoRL..29.1719K. doi:10.1029/2002GL015392. https://doi.org/10.1029%2F2002GL015392
Beatty, Kelly (January 23, 2018). "Water Ice Found Exposed in Martian Cliffs - Sky & Telescope". Sky & Telescope. Retrieved October 3, 2018. https://www.skyandtelescope.com/astronomy-news/cliffs-reveal-water-ice-on-mars/
Astrobiology Strategy 2015 Archived December 22, 2016, at the Wayback Machine (PDF) NASA. https://nai.nasa.gov/media/medialibrary/2016/04/NASA_Astrobiology_Strategy_2015_FINAL_041216.pdf
Conrad, P. G.; Archer, D.; Coll, P.; De La Torre, M.; Edgett, K.; Eigenbrode, J. L.; Fisk, M.; Freissenet, C.; Franz, H.; et al. (2013). "Habitability Assessment at Gale Crater: Implications from Initial Results". 44th Lunar and Planetary Science Conference. 1719 (1719): 2185. Bibcode:2013LPI....44.2185C. /wiki/Bibcode_(identifier)
Committee on an Astrobiology Strategy for the Exploration of Mars; National Research Council (2007). "Planetary Protection for Mars Missions". An Astrobiology Strategy for the Exploration of Mars. The National Academies Press. pp. 95–98. ISBN 978-0-309-10851-5. 978-0-309-10851-5
Daley, Jason (July 6, 2017). "Mars Surface May Be Too Toxic for Microbial Life - The combination of UV radiation and perchlorates common on Mars could be deadly for bacteria". Smithsonian. Retrieved July 8, 2017. http://www.smithsonianmag.com/smart-news/mars-surface-may-be-toxic-bacteria-180963966/
Wadsworth, Jennifer; Cockell, Charles S. (July 6, 2017). "Perchlorates on Mars enhance the bacteriocidal effects of UV light". Scientific Reports. 7 (4662): 4662. Bibcode:2017NatSR...7.4662W. doi:10.1038/s41598-017-04910-3. PMC 5500590. PMID 28684729. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5500590
"NASA Astrobiology Strategy" (PDF). NASA. 2015. Archived from the original (PDF) on December 22, 2016. Retrieved September 5, 2018. https://web.archive.org/web/20161222190306/https://nai.nasa.gov/media/medialibrary/2015/10/NASA_Astrobiology_Strategy_2015_151008.pdf
Dartnell, L. R.; Desorgher; Ward; Coates (January 30, 2007). "Modelling the surface and subsurface Martian radiation environment: Implications for astrobiology". Geophysical Research Letters. 34 (2): L02207. Bibcode:2007GeoRL..34.2207D. doi:10.1029/2006GL027494. S2CID 59046908. Archived from the original on October 7, 2019. Retrieved July 23, 2019. The damaging effect of ionising radiation on cellular structure is one of the prime limiting factors on the survival of life in potential astrobiological habitats. http://discovery.ucl.ac.uk/134609/
Dartnell, L. R.; Desorgher, L.; Ward, J. M.; Coates, A. J. (2007). "Martian sub-surface ionising radiation: biosignatures and geology" (PDF). Biogeosciences. 4 (4): 545–558. Bibcode:2007BGeo....4..545D. doi:10.5194/bg-4-545-2007. Archived (PDF) from the original on July 9, 2014. Retrieved September 1, 2019. This ionising radiation field is deleterious to the survival of dormant cells or spores and the persistence of molecular biomarkers in the subsurface, and so its characterisation. ... Even at a depth of 2 meters beneath the surface, any microbes would likely be dormant, cryopreserved by the current freezing conditions, and so metabolically inactive and unable to repair cellular degradation as it occurs. http://hal.archives-ouvertes.fr/docs/00/29/76/31/PDF/bg-4-545-2007.pdf
de Morais, A. (2012). "A Possible Biochemical Model for Mars" (PDF). 43rd Lunar and Planetary Science Conference. Archived (PDF) from the original on July 6, 2021. Retrieved June 5, 2013. The extensive volcanism at that time much possibly created subsurface cracks and caves within different strata, and the liquid water could have been stored in these subterraneous places, forming large aquifers with deposits of saline liquid water, minerals organic molecules, and geothermal heat – ingredients for life as we know on Earth. http://www.lpi.usra.edu/meetings/lpsc2012/pdf/2943.pdf
Didymus, JohnThomas (January 21, 2013). "Scientists find evidence Mars subsurface could hold life". Digital Journal – Science. Archived from the original on December 13, 2013. Retrieved June 16, 2013. There can be no life on the surface of Mars, because it is bathed in radiation and it's completely frozen. Life in the subsurface would be protected from that. – Prof. Parnell. http://digitaljournal.com/article/341801
Steigerwald, Bill (January 15, 2009). "Martian Methane Reveals the Red Planet is not a Dead Planet". NASA's Goddard Space Flight Center. NASA. Archived from the original on January 17, 2009. Retrieved June 16, 2013. If microscopic Martian life is producing the methane, it likely resides far below the surface, where it's still warm enough for liquid water to exist https://web.archive.org/web/20090117141425/http://www.nasa.gov/mission_pages/mars/news/marsmethane.html
"Mars Exploration: Missions". Marsprogram.jpl.nasa.gov. Archived from the original on April 11, 2004. Retrieved December 19, 2010. https://web.archive.org/web/20040411165457/http://marsprogram.jpl.nasa.gov/missions/past/mariner8-9.html
Carr, M. H.; Baum, W. A.; Blasius, K. R.; Briggs, G. A.; Cutts, J. A.; Duxbury, T. C.; Greeley, R.; Guest, J.; Masursky, H.; Smith, B. A. (January 1980). "Viking Orbiter Views of Mars". History.nasa.gov. Retrieved December 19, 2010. https://history.nasa.gov/SP-441/ch4.htm
Carr, M. H.; Baum, W. A.; Blasius, K. R.; Briggs, G. A.; Cutts, J. A.; Duxbury, T. C.; Greeley, R.; Guest, J.; Masursky, H.; Smith, B. A. (January 1980). "ch5". NASA History. NASA. Retrieved December 19, 2010. https://history.nasa.gov/SP-441/ch5.htm
Raeburn, P. (1998). "Uncovering the Secrets of the Red Planet Mars". National Geographic. Washington D.C.
Moore, P.; et al. (1990). The Atlas of the Solar System. New York: Mitchell Beazley Publishers.
Kieffer, Hugh H. (1992). Mars. University of Arizona Press. ISBN 978-0-8165-1257-7. Retrieved March 7, 2011. 978-0-8165-1257-7
Carr, M. H.; Baum, W. A.; Blasius, K. R.; Briggs, G. A.; Cutts, J. A.; Duxbury, T. C.; Greeley, R.; Guest, J.; Masursky, H.; Smith, B. A. (January 1980). "Craters". NASA. Retrieved December 19, 2010. https://history.nasa.gov/SP-441/ch7.htm
Morton, O. (2002). Mapping Mars. Picador, NY. ISBN 9780312245511. 9780312245511
Arvidson, R; Gooding, James L.; Moore, Henry J. (1989). "The Martian surface as Imaged, Sampled, and Analyzed by the Viking Landers". Reviews of Geophysics. 27 (1): 39–60. Bibcode:1989RvGeo..27...39A. doi:10.1029/RG027i001p00039. /wiki/Bibcode_(identifier)
Clark, B.; Baird, AK; Rose, HJ Jr.; Toulmin P, 3rd; Keil, K; Castro, AJ; Kelliher, WC; Rowe, CD; Evans, PH (1976). "Inorganic Analysis of Martian Samples at the Viking Landing Sites". Science. 194 (4271): 1283–1288. Bibcode:1976Sci...194.1283C. doi:10.1126/science.194.4271.1283. PMID 17797084. S2CID 21349024.{{cite journal}}: CS1 maint: numeric names: authors list (link) /wiki/Bibcode_(identifier)
Zuber, M. T.; Smith, D. E.; Solomon, S. C.; Abshire, J. B.; Afzal, R. S.; Aharonson, O.; Fishbaugh, K.; Ford, P. G.; Frey, H. V.; Garvin, J. B.; Head, J. W.; Ivanov, A. B.; Johnson, C. L.; Muhleman, D. O.; Neumann, G. A.; Pettengill, G. H.; Phillips, R. J.; Sun, X.; Zwally, H. J.; Banerdt, W. B.; Duxbury, T. C. (1998). "Observations of the north polar region of Mars from the Mars orbiter laser altimeter". Science. 282 (5396): 2053–2060. Bibcode:1998Sci...282.2053Z. doi:10.1126/science.282.5396.2053. PMID 9851922. https://pubmed.ncbi.nlm.nih.gov/9851922/
Hoefen, T.M.; et al. (2003). "Discovery of Olivine in the Nili Fossae Region of Mars". Science. 302 (5645): 627–630. Bibcode:2003Sci...302..627H. doi:10.1126/science.1089647. PMID 14576430. S2CID 20122017. https://zenodo.org/record/1230836
Hoefen, T.; Clark, RN; Bandfield, JL; Smith, MD; Pearl, JC; Christensen, PR (2003). "Discovery of Olivine in the Nili Fossae Region of Mars". Science. 302 (5645): 627–630. Bibcode:2003Sci...302..627H. doi:10.1126/science.1089647. PMID 14576430. S2CID 20122017. https://zenodo.org/record/1230836
Malin, Michael C.; Edgett, Kenneth S. (2001). "Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission". Journal of Geophysical Research. 106 (E10): 23429–23570. Bibcode:2001JGR...10623429M. doi:10.1029/2000JE001455. S2CID 129376333. https://doi.org/10.1029%2F2000JE001455
"Atmospheric and Meteorological Properties". NASA. December 20, 2017. https://mars.jpl.nasa.gov/MPF/science/atmospheric.html
Golombek, M. P.; Cook, R. A.; Economou, T.; Folkner, W. M.; Haldemann, A. F. C.; Kallemeyn, P. H.; Knudsen, J. M.; Manning, R. M.; Moore, H. J.; Parker, T. J.; Rieder, R.; Schofield, J. T.; Smith, P. H.; Vaughan, R. M. (1997). "Overview of the Mars Pathfinder Mission and Assessment of Landing Site Predictions". Science. 278 (5344): 1743–1748. Bibcode:1997Sci...278.1743G. doi:10.1126/science.278.5344.1743. PMID 9388167. https://doi.org/10.1126%2Fscience.278.5344.1743
Golombek, M. P.; Cook, R. A.; Economou, T.; Folkner, W. M.; Haldemann, A. F. C.; Kallemeyn, P. H.; Knudsen, J. M.; Manning, R. M.; Moore, H. J.; Parker, T. J.; Rieder, R.; Schofield, J. T.; Smith, P. H.; Vaughan, R. M. (1997). "Overview of the Mars Pathfinder Mission and Assessment of Landing Site Predictions". Science. 278 (5344): 1743–1748. Bibcode:1997Sci...278.1743G. doi:10.1126/science.278.5344.1743. PMID 9388167. https://doi.org/10.1126%2Fscience.278.5344.1743
"Mars Odyssey: Newsroom". Mars.jpl.nasa.gov. May 28, 2002. https://mars.jpl.nasa.gov/odyssey/newsroom/pressreleases/20020528a.html
Feldman, W.C.; et al. (2004). "Global Distribution of Near-Surface Hydrogen on Mars". Journal of Geophysical Research. 109 (E9). Bibcode:2004JGRE..109.9006F. doi:10.1029/2003JE002160. https://doi.org/10.1029%2F2003JE002160
Murche, S.; Mustard, John; Bishop, Janice; Head, James; Pieters, Carle; Erard, Stephane (1993). "Spatial Variations in the Spectral Properties of Bright Regions on Mars". Icarus. 105 (2): 454–468. Bibcode:1993Icar..105..454M. doi:10.1006/icar.1993.1141. /wiki/Janice_Bishop
"Home Page for Bell (1996) Geochemical Society paper". Marswatch.tn.cornell.edu. Retrieved December 19, 2010. http://marswatch.tn.cornell.edu/burns.html
Feldman, W. C.; Boynton, W. V.; Tokar, R. L.; Prettyman, T. H.; Gasnault, O.; Squyres, S. W.; Elphic, R. C.; Lawrence, D. J.; Lawson, S. L.; Maurice, S.; McKinney, G. W.; Moore, K. R.; Reedy, R. C. (2002). "Global Distribution of Neutrons from Mars: Results from Mars Odyssey". Science. 297 (5578): 75–78. Bibcode:2002Sci...297...75F. doi:10.1126/science.1073541. PMID 12040088. S2CID 11829477. https://doi.org/10.1126%2Fscience.1073541
Wilson, Jack T.; et al. (January 2018). "Equatorial locations of water on Mars: Improved resolution maps based on Mars Odyssey Neutron Spectrometer data". Icarus. 299: 148–160. arXiv:1708.00518. Bibcode:2018Icar..299..148W. doi:10.1016/j.icarus.2017.07.028. S2CID 59520156. /wiki/Icarus_(journal)
Wilson, Jack T.; et al. (January 2018). "Equatorial locations of water on Mars: Improved resolution maps based on Mars Odyssey Neutron Spectrometer data". Icarus. 299: 148–160. arXiv:1708.00518. Bibcode:2018Icar..299..148W. doi:10.1016/j.icarus.2017.07.028. S2CID 59520156. /wiki/Icarus_(journal)
Mitrofanov, I.; Anfimov, D.; Kozyrev, A.; Litvak, M.; Sanin, A.; Tret'yakov, V.; Krylov, A.; Shvetsov, V.; Boynton, W.; Shinohara, C.; Hamara, D.; Saunders, R. S. (2002). "Maps of Subsurface Hydrogen from the High Energy Neutron Detector, Mars Odyssey". Science. 297 (5578): 78–81. Bibcode:2002Sci...297...78M. doi:10.1126/science.1073616. PMID 12040089. S2CID 589477. https://doi.org/10.1126%2Fscience.1073616
Boynton, W. V.; Feldman, W. C.; Squyres, S. W.; Prettyman, T. H.; Brückner, J.; Evans, L. G.; Reedy, R. C.; Starr, R.; Arnold, J. R.; Drake, D. M.; Englert, P. A. J.; Metzger, A. E.; Mitrofanov, Igor; Trombka, J. I.; d'Uston, C.; Wänke, H.; Gasnault, O.; Hamara, D. K.; Janes, D. M.; Marcialis, R. L.; Maurice, S.; Mikheeva, I.; Taylor, G. J.; Tokar, R.; Shinohara, C. (2002). "Distribution of Hydrogen in the Near Surface of Mars: Evidence for Subsurface Ice Deposits". Science. 297 (5578): 81–85. Bibcode:2002Sci...297...81B. doi:10.1126/science.1073722. PMID 12040090. S2CID 16788398. https://doi.org/10.1126%2Fscience.1073722
Irwin, Rossman P.; Howard, Alan D.; Craddock, Robert A.; Moore, Jeffrey M. (2005). "An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development". Journal of Geophysical Research. 110 (E12): E12S15. Bibcode:2005JGRE..11012S15I. doi:10.1029/2005JE002460. https://doi.org/10.1029%2F2005JE002460
"Dao Vallis". Mars Odyssey Mission. THEMIS. August 7, 2002. Retrieved December 19, 2010. http://themis.asu.edu/zoom-20020807a
Holt, J. W.; Safaeinili, A.; Plaut, J. J.; Young, D. A.; Head, J. W.; Phillips, R. J.; Campbell, B. A.; Carter, L. M.; Gim, Y.; Seu, R.; Team, Sharad (2008). "Radar Sounding Evidence for Ice within Lobate Debris Aprons near Hellas Basin, Mid-Southern Latitudes of Mars" (PDF). Lunar and Planetary Science. XXXIX (1391): 2441. Bibcode:2008LPI....39.2441H. Archived (PDF) from the original on June 11, 2016. Retrieved December 19, 2010. http://www.lpi.usra.edu/meetings/lpsc2008/pdf/2441.pdf
Lewis, Richard (April 23, 2008). "Glaciers Reveal Martian Climate Has Been Recently Active". Brown University. Archived from the original on October 12, 2013. Retrieved October 12, 2009. http://news.brown.edu/pressreleases/2008/04/martian-glaciers
Plaut, Jeffrey J.; Safaeinili, Ali; Holt, John W.; Phillips, Roger J.; Head, James W.; Seu, Roberto; Putzig, Nathaniel E.; Frigeri, Alessandro (2009). "Radar Evidence for Ice in Lobate Debris Aprons in the Mid-Northern Latitudes of Mars" (PDF). Geophysical Research Letters. 36 (2): n/a. Bibcode:2009GeoRL..36.2203P. doi:10.1029/2008GL036379. S2CID 17530607. Archived from the original (PDF) on January 23, 2021. Retrieved April 4, 2010. https://web.archive.org/web/20210123201616/http://www.planetary.brown.edu/pdfs/3733.pdf
Holt, J. W.; Safaeinili, A.; Plaut, J. J.; Young, D. A.; Head, J. W.; Phillips, R. J.; Campbell, B. A.; Carter, L. M.; Gim, Y.; Seu, R.; Team, Sharad (2008). "Radar Sounding Evidence for Ice within Lobate Debris Aprons near Hellas Basin, Mid-Southern Latitudes of Mars" (PDF). Lunar and Planetary Science. XXXIX (1391): 2441. Bibcode:2008LPI....39.2441H. Archived (PDF) from the original on June 11, 2016. Retrieved December 19, 2010. http://www.lpi.usra.edu/meetings/lpsc2008/pdf/2441.pdf
Plaut, Jeffrey J.; Safaeinili, Ali; Holt, John W.; Phillips, Roger J.; Head, James W.; Seu, Roberto; Putzig, Nathaniel E.; Frigeri, Alessandro (2009). "Radar Evidence for Ice in Lobate Debris Aprons in the Mid-Northern Latitudes of Mars" (PDF). Geophysical Research Letters. 36 (2): n/a. Bibcode:2009GeoRL..36.2203P. doi:10.1029/2008GL036379. S2CID 17530607. Archived from the original (PDF) on January 23, 2021. Retrieved April 4, 2010. https://web.archive.org/web/20210123201616/http://www.planetary.brown.edu/pdfs/3733.pdf
Smith, P. H.; Tamppari, L.; Arvidson, R. E.; Bass, D.; Blaney, D.; Boynton, W.; Carswell, A.; Catling, D.; Clark, B.; Duck, T.; DeJong, E.; Fisher, D.; Goetz, W.; Gunnlaugsson, P.; Hecht, M.; Hipkin, V.; Hoffman, J.; Hviid, S.; Keller, H.; Kounaves, S.; Lange, C. F.; Lemmon, M.; Madsen, M.; Malin, M.; Markiewicz, W.; Marshall, J.; McKay, C.; Mellon, M.; Michelangeli, D.; et al. (2008). "Introduction to special section on the phoenix mission: Landing site characterization experiments, mission overviews, and expected science". Journal of Geophysical Research. 113 (E12): E00A18. Bibcode:2008JGRE..113.0A18S. doi:10.1029/2008JE003083. hdl:2027.42/94752. S2CID 38911896. /wiki/Diana_Blaney
"NASA Data Shed New Light About Water and Volcanoes on Mars". NASA. September 9, 2010. Archived from the original on January 26, 2021. Retrieved March 21, 2014. https://web.archive.org/web/20210126063250/http://www.nasa.gov/mission_pages/phoenix/news/phx20100909.html
Mellon, M.; Jakosky, B. (1993). "Geographic variations in the thermal and diffusive stability of ground ice on Mars". Journal of Geophysical Research. 98 (E2): 3345–3364. Bibcode:1993JGR....98.3345M. doi:10.1029/92JE02355. /wiki/Bibcode_(identifier)
Feldman, W.C.; et al. (2004). "Global Distribution of Near-Surface Hydrogen on Mars". Journal of Geophysical Research. 109 (E9). Bibcode:2004JGRE..109.9006F. doi:10.1029/2003JE002160. https://doi.org/10.1029%2F2003JE002160
Khuller, Aditya R.; Christensen, Philip R.; Warren, Stephen G. (September 2021). "Spectral Albedo of Dusty Martian H 2 O Snow and Ice". Journal of Geophysical Research: Planets. 126 (9). Bibcode:2021JGRE..12606910K. doi:10.1029/2021JE006910. ISSN 2169-9097. S2CID 238721489. https://doi.org/10.1029%2F2021JE006910
"Confirmation of Water on Mars". Nasa.gov. June 20, 2008. Archived from the original on July 1, 2008. Retrieved October 8, 2009. https://web.archive.org/web/20080701104400/http://www.nasa.gov/mission_pages/phoenix/news/phoenix-20080620.html
Johnson, John (August 1, 2008). "There's water on Mars, NASA confirms". Los Angeles Times. https://www.latimes.com/news/science/la-sci-phoenix1-2008aug01,0,3012423.story
Kostama, V.-P.; Kreslavsky, M. A.; Head, J. W. (June 3, 2006). "Recent high-latitude icy mantle in the northern plains of Mars: Characteristics and ages of emplacement". Geophysical Research Letters. 33 (11): L11201. Bibcode:2006GeoRL..3311201K. CiteSeerX 10.1.1.553.1127. doi:10.1029/2006GL025946. S2CID 17229252. Archived from the original on March 18, 2009. Retrieved October 8, 2009. https://web.archive.org/web/20090318010946/http://www.agu.org/pubs/crossref/2006/2006GL025946.shtml
Heldmann, Jennifer L.; et al. (May 7, 2005). "Formation of Martian gullies by the action of liquid water flowing under current Martian environmental conditions" (PDF). Journal of Geophysical Research. 110 (E5): Eo5004. Bibcode:2005JGRE..110.5004H. doi:10.1029/2004JE002261. hdl:2060/20050169988. S2CID 1578727. Archived from the original (PDF) on October 1, 2008. Retrieved October 8, 2009. 'conditions such as now occur on Mars, outside of the temperature-pressure stability regime of liquid water' … 'Liquid water is typically stable at the lowest elevations and at low latitudes on the planet, because the atmospheric pressure is greater than the vapor pressure of water and surface temperatures in equatorial regions can reach 220 K (−53 °C; −64 °F) for parts of the day. https://web.archive.org/web/20081001162643/http://daleandersen.seti.org/Dale_Andersen/Science_articles_files/Heldmann%20et%20al.2005.pdf
Smith, P. H.; Tamppari, L.; Arvidson, R. E.; Bass, D.; Blaney, D.; Boynton, W.; Carswell, A.; Catling, D.; Clark, B.; Duck, T.; DeJong, E.; Fisher, D.; Goetz, W.; Gunnlaugsson, P.; Hecht, M.; Hipkin, V.; Hoffman, J.; Hviid, S.; Keller, H.; Kounaves, S.; Lange, C. F.; Lemmon, M.; Madsen, M.; Malin, M.; Markiewicz, W.; Marshall, J.; McKay, C.; Mellon, M.; Michelangeli, D.; et al. (2008). "Introduction to special section on the phoenix mission: Landing site characterization experiments, mission overviews, and expected science". Journal of Geophysical Research. 113 (E12): E00A18. Bibcode:2008JGRE..113.0A18S. doi:10.1029/2008JE003083. hdl:2027.42/94752. S2CID 38911896. /wiki/Diana_Blaney
"The Dirt on Mars Lander Soil Findings". SPACE.com. July 2, 2009. Retrieved December 19, 2010. http://www.space.com/scienceastronomy/090702-phoenix-soil.html
Martínez, G. M. & Renno, N. O. (2013). "Water and brines on Mars: current evidence and implications for MSL". Space Science Reviews. 175 (1–4): 29–51. Bibcode:2013SSRv..175...29M. doi:10.1007/s11214-012-9956-3. https://doi.org/10.1007%2Fs11214-012-9956-3
Martínez, G. M. & Renno, N. O. (2013). "Water and brines on Mars: current evidence and implications for MSL". Space Science Reviews. 175 (1–4): 29–51. Bibcode:2013SSRv..175...29M. doi:10.1007/s11214-012-9956-3. https://doi.org/10.1007%2Fs11214-012-9956-3
Martínez, G. M. & Renno, N. O. (2013). "Water and brines on Mars: current evidence and implications for MSL". Space Science Reviews. 175 (1–4): 29–51. Bibcode:2013SSRv..175...29M. doi:10.1007/s11214-012-9956-3. https://doi.org/10.1007%2Fs11214-012-9956-3
Rennó, Nilton O.; Bos, Brent J.; Catling, David; Clark, Benton C.; Drube, Line; Fisher, David; Goetz, Walter; Hviid, Stubbe F.; Keller, Horst Uwe; Kok, Jasper F.; Kounaves, Samuel P.; Leer, Kristoffer; Lemmon, Mark; Madsen, Morten Bo; Markiewicz, Wojciech J.; Marshall, John; McKay, Christopher; Mehta, Manish; Smith, Miles; Zorzano, M. P.; Smith, Peter H.; Stoker, Carol; Young, Suzanne M. M. (2009). "Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site". Journal of Geophysical Research. 114 (E1): E00E03. Bibcode:2009JGRE..114.0E03R. doi:10.1029/2009JE003362. hdl:2027.42/95444. S2CID 55050084. /wiki/Bibcode_(identifier)
Chang, Kenneth (March 16, 2009). "Blobs in Photos of Mars Lander Stir a Debate: Are They Water?". New York Times (online). https://www.nytimes.com/2009/03/17/science/17mars.html
"Liquid Saltwater Is Likely Present On Mars, New Analysis Shows". ScienceDaily. March 20, 2009. https://www.sciencedaily.com/releases/2009/03/090319232438.htm
"Astrobiology Top 10: Too Salty to Freeze". Astrobiology Magazine. Archived from the original on June 4, 2011. Retrieved December 19, 2010. https://web.archive.org/web/20110604121445/http://www.astrobio.net/index.php?option=com_retrospection&task=detail&id=3350
Ojha, L.; Wilhelm, M. B.; Murchie, S. L.; McEwen, A. S.; Wray, J. J.; Hanley, J.; Massé, M.; Chojnacki, M. (2015). "Spectral evidence for hydrated salts in recurring slope lineae on Mars". Nature Geoscience. 8 (11): 829–832. Bibcode:2015NatGe...8..829O. doi:10.1038/ngeo2546. S2CID 59152931. /wiki/Bibcode_(identifier)
Hecht, M. H.; Kounaves, S. P.; Quinn, R. C.; West, S. J.; Young, S. M. M.; Ming, D. W.; Catling, D. C.; Clark, B. C.; Boynton, W. V.; Hoffman, J.; DeFlores, L. P.; Gospodinova, K.; Kapit, J.; Smith, P. H. (2009). "Detection of Perchlorate and the Soluble Chemistry of Martian Soil at the Phoenix Lander Site". Science. 325 (5936): 64–67. Bibcode:2009Sci...325...64H. doi:10.1126/science.1172466. PMID 19574385. S2CID 24299495. /wiki/Bibcode_(identifier)
Smith, P. H.; Tamppari, L. K.; Arvidson, R. E.; Bass, D.; Blaney, D.; Boynton, W. V.; Carswell, A.; Catling, D. C.; Clark, B. C.; Duck, T.; DeJong, E.; Fisher, D.; Goetz, W.; Gunnlaugsson, H. P.; Hecht, M. H.; Hipkin, V.; Hoffman, J.; Hviid, S. F.; Keller, H. U.; Kounaves, S. P.; Lange, C. F.; Lemmon, M. T.; Madsen, M. B.; Markiewicz, W. J.; Marshall, J.; McKay, C. P.; Mellon, M. T.; Ming, D. W.; Morris, R. V.; et al. (2009). "H2O at the Phoenix Landing Site". Science. 325 (5936): 58–61. Bibcode:2009Sci...325...58S. doi:10.1126/science.1172339. PMID 19574383. S2CID 206519214. /wiki/Diana_Blaney
"The Dirt on Mars Lander Soil Findings". SPACE.com. July 2, 2009. Retrieved December 19, 2010. http://www.space.com/scienceastronomy/090702-phoenix-soil.html
Whiteway, J. A.; Komguem, L.; Dickinson, C.; Cook, C.; Illnicki, M.; Seabrook, J.; Popovici, V.; Duck, T. J.; Davy, R.; Taylor, P. A.; Pathak, J.; Fisher, D.; Carswell, A. I.; Daly, M.; Hipkin, V.; Zent, A. P.; Hecht, M. H.; Wood, S. E.; Tamppari, L. K.; Renno, N.; Moores, J. E.; Lemmon, M. T.; Daerden, F.; Smith, P. H. (2009). "Mars Water-Ice Clouds and Precipitation". Science. 325 (5936): 68–70. Bibcode:2009Sci...325...68W. doi:10.1126/science.1172344. PMID 19574386. S2CID 206519222. /wiki/Bibcode_(identifier)
"CSA – News Release". Asc-csa.gc.ca. July 2, 2009. Archived from the original on July 5, 2011. https://web.archive.org/web/20110705011110/http://www.asc-csa.gc.ca/eng/media/news_releases/2009/0702.asp
"Mars Exploration Rover Mission: Press Releases". Marsrovers.jpl.nasa.gov. March 5, 2004. https://marsrovers.jpl.nasa.gov/newsroom/pressreleases/20040305a.html
"NASA – Mars Rover Spirit Unearths Surprise Evidence of Wetter Past". NASA. May 21, 2007. Archived from the original on March 8, 2013. Retrieved January 17, 2012. https://web.archive.org/web/20130308054606/http://www.nasa.gov/mission_pages/mer/mer-20070521.html
Bertster, Guy (December 10, 2007). "Mars Rover Investigates Signs of Steamy Martian Past". Press Release. Jet Propulsion Laboratory, Pasadena, California. https://marsrovers.jpl.nasa.gov/newsroom/pressreleases/20071210a.html
Klingelhofer, G.; et al. (2005). "volume XXXVI". Lunar Planet. Sci. (abstr.): 2349.
Schroder, C.; et al. (2005). "Journal of Geophysical Research" (abstr.). 7. European Geosciences Union, General Assembly: 10254. {{cite journal}}: Cite journal requires |journal= (help) /wiki/Template:Cite_journal
Morris, S.; et al. (2006). "Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journal through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills". J. Geophys. Res. 111 (E2): n/a. Bibcode:2006JGRE..111.2S13M. doi:10.1029/2005je002584. hdl:1893/17159. /wiki/Bibcode_(identifier)
Ming, D.; Mittlefehldt, D. W.; Morris, R. V.; Golden, D. C.; Gellert, R.; Yen, A.; Clark, B. C.; Squyres, S. W.; Farrand, W. H.; Ruff, S. W.; Arvidson, R. E.; Klingelhöfer, G.; McSween, H. Y.; Rodionov, D. S.; Schröder, C.; De Souza, P. A.; Wang, A. (2006). "Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars". J. Geophys. Res. 111 (E2): E02S12. Bibcode:2006JGRE..111.2S12M. doi:10.1029/2005JE002560. hdl:1893/17114. /wiki/Bibcode_(identifier)
Bell, J, ed. (2008). The Martian Surface. Cambridge University Press. ISBN 978-0-521-86698-9. 978-0-521-86698-9
Morris, R. V.; Ruff, S. W.; Gellert, R.; Ming, D. W.; Arvidson, R. E.; Clark, B. C.; Golden, D. C.; Siebach, K.; Klingelhofer, G.; Schroder, C.; Fleischer, I.; Yen, A. S.; Squyres, S. W. (June 4, 2010). "Outcrop of long-sought rare rock on Mars found". Science. 329 (5990). Sciencedaily.com: 421–424. Bibcode:2010Sci...329..421M. doi:10.1126/science.1189667. PMID 20522738. S2CID 7461676. https://www.sciencedaily.com/releases/2010/06/100603140959.htm
Morris, Richard V.; Ruff, Steven W.; Gellert, Ralf; Ming, Douglas W.; Arvidson, Raymond E.; Clark, Benton C.; Golden, D. C.; Siebach, Kirsten; et al. (June 3, 2010). "Identification of Carbonate-Rich Outcrops on Mars by the Spirit Rover". Science. 329 (5990): 421–424. Bibcode:2010Sci...329..421M. doi:10.1126/science.1189667. PMID 20522738. S2CID 7461676. https://doi.org/10.1126%2Fscience.1189667
Grotzinger, J. P.; Arvidson, R. E.; Bell III, J. F.; Calvin, W.; Clark, B. C.; Fike, D. A.; Golombek, M.; Greeley, R.; Haldemann, A.; Herkenhoff, K. E.; Jolliff, B. L.; Knoll, A. H.; Malin, M.; McLennan, S. M.; Parker, T.; Soderblom, L.; Sohl-Dickstein, J. N.; Squyres, S. W.; Tosca, N. J.; Watters, W. A. (November 25, 2005). "Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum". Earth and Planetary Science Letters. 240 (1): 11–72. Bibcode:2005E&PSL.240...11G. doi:10.1016/j.epsl.2005.09.039. ISSN 0012-821X. /wiki/Bibcode_(identifier)
"Opportunity Rover Finds Strong Evidence Meridiani Planum Was Wet". Retrieved July 8, 2006. https://marsrovers.jpl.nasa.gov/newsroom/pressreleases/20040302a.html
Harwood, William (January 25, 2013). "Opportunity rover moves into 10th year of Mars operations". Space Flight Now. http://www.spaceflightnow.com/news/n1301/25opportunity/
Amos, Jonathan (June 10, 2013). "Old Opportunity Mars rover makes rock discovery". BBC News. Archived from the original on October 9, 2021. Retrieved June 22, 2018. https://www.bbc.co.uk/news/science-environment-22832673
"Mars Rover Opportunity Examines Clay Clues in Rock". Jet Propulsion Laboratory, NASA. May 17, 2013. Archived from the original on June 11, 2013. Retrieved June 16, 2013. https://www.jpl.nasa.gov/news/news.php?release=2013-167
Benison, KC; Laclair, DA (2003). "Modern and ancient extremely acid saline deposits: terrestrial analogs for martian environments?". Astrobiology. 3 (3): 609–618. Bibcode:2003AsBio...3..609B. doi:10.1089/153110703322610690. PMID 14678669. S2CID 36757620. /wiki/Bibcode_(identifier)
Benison, K; Bowen, B (2006). "Acid saline lake systems give clues about past environments and the search for life on Mars". Icarus. 183 (1): 225–229. Bibcode:2006Icar..183..225B. doi:10.1016/j.icarus.2006.02.018. /wiki/Bibcode_(identifier)
Amos, Jonathan (June 10, 2013). "Old Opportunity Mars rover makes rock discovery". BBC News. Archived from the original on October 9, 2021. Retrieved June 22, 2018. https://www.bbc.co.uk/news/science-environment-22832673
"Mars Rover Opportunity Examines Clay Clues in Rock". Jet Propulsion Laboratory, NASA. May 17, 2013. Archived from the original on June 11, 2013. Retrieved June 16, 2013. https://www.jpl.nasa.gov/news/news.php?release=2013-167
Grotzinger, John P. (January 24, 2014). "Introduction to Special Issue – Habitability, Taphonomy, and the Search for Organic Carbon on Mars". Science. 343 (6169): 386–387. Bibcode:2014Sci...343..386G. doi:10.1126/science.1249944. PMID 24458635. https://doi.org/10.1126%2Fscience.1249944
Various (January 24, 2014). "Special Issue – Table of Contents – Exploring Martian Habitability". Science. 343 (6169): 345–452. Archived from the original on January 29, 2014. Retrieved June 30, 2022. https://www.science.org/toc/science/343/6169
Grotzinger, J.P.; et al. (January 24, 2014). "A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars". Science. 343 (6169): 1242777. Bibcode:2014Sci...343A.386G. CiteSeerX 10.1.1.455.3973. doi:10.1126/science.1242777. PMID 24324272. S2CID 52836398. /wiki/Science_(journal)
Osterloo, MM; Hamilton, VE; Bandfield, JL; Glotch, TD; Baldridge, AM; Christensen, PR; Tornabene, LL; Anderson, FS (2008). "Chloride-Bearing Materials in the Southern Highlands of Mars". Science. 319 (5870): 1651–1654. Bibcode:2008Sci...319.1651O. CiteSeerX 10.1.1.474.3802. doi:10.1126/science.1150690. PMID 18356522. S2CID 27235249. /wiki/Bibcode_(identifier)
Weitz, C.; Milliken, R.E.; Grant, J.A.; McEwen, A.S.; Williams, R.M.E.; Bishop, J.L.; Thomson, B.J. (2010). "Mars Reconnaissance Orbiter observations of light-toned layered deposits and associated fluvial landforms on the plateaus adjacent to Valles Marineris". Icarus. 205 (1): 73–102. Bibcode:2010Icar..205...73W. doi:10.1016/j.icarus.2009.04.017. /wiki/Janice_Bishop
Zendejas, J.; Segura, A.; Raga, A.C. (December 2010). "Atmospheric mass loss by stellar wind from planets around main sequence M stars". Icarus. 210 (2): 539–1000. arXiv:1006.0021. Bibcode:2010Icar..210..539Z. doi:10.1016/j.icarus.2010.07.013. S2CID 119243879. /wiki/ArXiv_(identifier)
Grotzinger, J.; Milliken, R., eds. (2012). Sedimentary Geology of Mars. SEPM.
"HiRISE – High Resolution Imaging Science Experiment". HiriUniversity of Arizona. Retrieved December 19, 2010. http://hirise.lpl.arizona.edu?PSP_008437_1750
"Target Zone: Nilosyrtis? | Mars Odyssey Mission THEMIS". Themis.asu.edu. Retrieved December 19, 2010. http://themis.asu.edu/features/nilosyrtis
Head, James W.; Mustard, John F.; Kreslavsky, Mikhail A.; Milliken, Ralph E.; Marchant, David R. (2003). "Recent ice ages on Mars". Nature. 426 (6968): 797–802. Bibcode:2003Natur.426..797H. doi:10.1038/nature02114. PMID 14685228. S2CID 2355534. /wiki/Bibcode_(identifier)
Mellon, M. T.; Jakosky, B. M.; Postawko, S. E. (1997). "The persistence of equatorial ground ice on Mars". J. Geophys. Res. 102 (E8). onlinelibrary.wiley.com: 19357–19369. Bibcode:1997JGR...10219357M. doi:10.1029/97JE01346. https://doi.org/10.1029%2F97JE01346
Arfstrom, John D. (2012). "A Conceptual Model of Equatorial Ice Sheets on Mars. J" (PDF). Comparative Climatology of Terrestrial Planets. Lunar and Planetary Institute. http://www.lpi.usra.edu/meetings/climatology2012/pdf/8001.pdf
Head, J. W.; Marchant, D. R; Kreslavsky, M. A. (2008). "Formation of gullies on Mars: Link to recent climate history and insolation microenvironments implicate surface water flow origin". PNAS. 105 (36): 13258–13263. Bibcode:2008PNAS..10513258H. doi:10.1073/pnas.0803760105. PMC 2734344. PMID 18725636. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2734344
"Mars may be emerging from an ice age". ScienceDaily. MLA NASA/Jet Propulsion Laboratory. December 18, 2003. https://www.sciencedaily.com/releases/2003/12/031218075443.htm
Holt, J. W.; Safaeinili, A.; Plaut, J. J.; Young, D. A.; Head, J. W.; Phillips, R. J.; Campbell, B. A.; Carter, L. M.; Gim, Y.; Seu, R.; Team, Sharad (2008). "Radar Sounding Evidence for Ice within Lobate Debris Aprons near Hellas Basin, Mid-Southern Latitudes of Mars" (PDF). Lunar and Planetary Science. XXXIX (1391): 2441. Bibcode:2008LPI....39.2441H. Archived (PDF) from the original on June 11, 2016. Retrieved December 19, 2010. http://www.lpi.usra.edu/meetings/lpsc2008/pdf/2441.pdf
Kieffer, Hugh H. (1992). Mars. University of Arizona Press. ISBN 978-0-8165-1257-7. Retrieved March 7, 2011. 978-0-8165-1257-7
Byrne, Shane; Dundas, Colin M.; Kennedy, Megan R.; Mellon, Michael T.; McEwen, Alfred S.; Cull, Selby C.; Daubar, Ingrid J.; Shean, David E.; Seelos, Kimberly D.; Murchie, Scott L.; Cantor, Bruce A.; Arvidson, Raymond E.; Edgett, Kenneth S.; Reufer, Andreas; Thomas, Nicolas; Harrison, Tanya N.; Posiolova, Liliya V.; Seelos, Frank P. (2009). "Distribution of mid-latitude ground ice on Mars from new impact craters". Science. 325 (5948): 1674–1676. Bibcode:2009Sci...325.1674B. doi:10.1126/science.1175307. PMID 19779195. S2CID 10657508. /wiki/Bibcode_(identifier)
"Water Ice Exposed in Mars Craters". SPACE.com. September 24, 2009. Retrieved December 19, 2010. http://www.space.com/scienceastronomy/090924-mars-crater-ice.html
Christensen, Philip R. (March 2003). "Formation of recent martian gullies through melting of extensive water-rich snow deposits". Nature. 422 (6927): 45–48. Bibcode:2003Natur.422...45C. doi:10.1038/nature01436. ISSN 1476-4687. PMID 12594459. S2CID 4385806. Archived from the original on August 9, 2021. Retrieved July 27, 2022. https://www.nature.com/articles/nature01436
Khuller, Aditya; Christensen, Philip (February 2021). "Evidence of Exposed Dusty Water Ice within Martian Gullies". Journal of Geophysical Research: Planets. 126 (2). Bibcode:2021JGRE..12606539R. doi:10.1029/2020JE006539. ISSN 2169-9097. S2CID 234174382. https://onlinelibrary.wiley.com/doi/10.1029/2020JE006539
S. Nerozzi; J.W. Holt (May 22, 2019). "Buried ice and sand caps at the north pole of Mars: revealing a record of climate change in the cavi unit with SHARAD". Geophysical Research Letters. 46 (13): 7278–7286. Bibcode:2019GeoRL..46.7278N. doi:10.1029/2019GL082114. hdl:10150/634098. S2CID 182153656. /wiki/Geophysical_Research_Letters
Lujendra Ojha; Stefano Nerozzi; Kevin Lewis (May 22, 2019). "Compositional Constraints on the North Polar Cap of Mars from Gravity and Topography". Geophysical Research Letters. 46 (15): 8671–8679. Bibcode:2019GeoRL..46.8671O. doi:10.1029/2019GL082294. S2CID 181334027. /wiki/Geophysical_Research_Letters
Soare, E., et al. 2019.
Possible (closed system) pingo and ice-wedge/thermokarst complexes at the mid latitudes of Utopia Planitia, Mars. Icarus. https://doi.org/10.1016/j.icarus.2019.03.010 https://doi.org/10.1016/j.icarus.2019.03.010
Brown, Dwayne; Cole, Steve; Webster, Guy; Agle, D.C. (September 27, 2012). "NASA Rover Finds Old Streambed On Martian Surface". NASA. https://www.nasa.gov/home/hqnews/2012/sep/HQ_12-338_Mars_Water_Stream.html
NASA (September 27, 2012). "NASA's Curiosity Rover Finds Old Streambed on Mars – video (51:40)". NASAtelevision. Archived from the original on November 13, 2021. /wiki/NASA
Chang, Alicia (September 27, 2012). "Mars rover Curiosity finds signs of ancient stream". Associated Press. http://apnews.excite.com/article/20120927/DA1IDOO00.html
Brown, Dwayne (October 30, 2012). "NASA Rover's First Soil Studies Help Fingerprint Martian Minerals". NASA. Archived from the original on June 3, 2016. Retrieved June 16, 2013. https://web.archive.org/web/20160603091908/http://www.nasa.gov/home/hqnews/2012/oct/HQ_12-383_Curiosity_CheMin.html
Brown, Dwayne; Webster, Guy; Neal-Jones, Nance (December 3, 2012). "NASA Mars Rover Fully Analyzes First Martian Soil Samples". NASA. Archived from the original on December 5, 2012. https://web.archive.org/web/20121205005911/http://mars.jpl.nasa.gov/msl/news/whatsnew/index.cfm?FuseAction=ShowNews&NewsID=1399
Chang, Ken (December 3, 2012). "Mars Rover Discovery Revealed". New York Times. https://thelede.blogs.nytimes.com/2012/12/03/mars-rover-discovery-revealed
Webster, Guy; Brown, Dwayne (March 18, 2013). "Curiosity Mars Rover Sees Trend In Water Presence". NASA. Archived from the original on March 22, 2013. https://web.archive.org/web/20130322065943/http://mars.jpl.nasa.gov/msl/news/whatsnew/index.cfm?FuseAction=ShowNews&NewsID=1446
Rincon, Paul (March 19, 2013). "Curiosity breaks rock to reveal dazzling white interior". BBC. https://www.bbc.co.uk/news/science-environment-21340279
Staff (March 20, 2013). "Red planet coughs up a white rock, and scientists freak out". MSN. Archived from the original on March 23, 2013. https://web.archive.org/web/20130323164757/http://now.msn.com/white-mars-rock-called-tintina-found-by-curiosity-rover
Webster, Guy; Brown, Dwayne (March 18, 2013). "Curiosity Mars Rover Sees Trend In Water Presence". NASA. Archived from the original on March 22, 2013. https://web.archive.org/web/20130322065943/http://mars.jpl.nasa.gov/msl/news/whatsnew/index.cfm?FuseAction=ShowNews&NewsID=1446
Lieberman, Josh (September 26, 2013). "Mars Water Found: Curiosity Rover Uncovers 'Abundant, Easily Accessible' Water In Martian Soil". iSciencetimes. http://www.isciencetimes.com/articles/6131/20130926/mars-water-soil-nasa-curiosity-rover-martian.htm
Leshin, L. A.; et al. (September 27, 2013). "Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover". Science. 341 (6153): 1238937. Bibcode:2013Sci...341E...3L. doi:10.1126/science.1238937. PMID 24072926. S2CID 206549244. https://semanticscholar.org/paper/7f3089e0c3e10eb39e48ff007e04a778811683dd
Grotzinger, John (September 26, 2013). "Introduction To Special Issue: Analysis of Surface Materials by the Curiosity Mars Rover". Science. 341 (6153): 1475. Bibcode:2013Sci...341.1475G. doi:10.1126/science.1244258. PMID 24072916. https://doi.org/10.1126%2Fscience.1244258
Neal-Jones, Nancy; Zubritsky, Elizabeth; Webster, Guy; Martialay, Mary (September 26, 2013). "Curiosity's SAM Instrument Finds Water and More in Surface Sample". NASA. https://www.nasa.gov/content/goddard/curiositys-sam-instrument-finds-water-and-more-in-surface-sample/
Webster, Guy; Brown, Dwayne (September 26, 2013). "Science Gains From Diverse Landing Area of Curiosity". NASA. Archived from the original on May 2, 2019. Retrieved September 27, 2013. https://web.archive.org/web/20190502194152/http://www.nasa.gov/mission_pages/msl/news/msl20130926.html
Chang, Kenneth (October 1, 2013). "Hitting Pay Dirt on Mars". New York Times. https://www.nytimes.com/2013/10/01/science/space/hitting-pay-dirt-on-mars.html
Jha, Alok (September 26, 2013). "Nasa's Curiosity rover finds water in Martian soil". The Guardian. https://www.theguardian.com/science/2013/sep/26/nasa-curiosity-rover-mars-soil-water
Grotzinger, John (September 26, 2013). "Introduction To Special Issue: Analysis of Surface Materials by the Curiosity Mars Rover". Science. 341 (6153): 1475. Bibcode:2013Sci...341.1475G. doi:10.1126/science.1244258. PMID 24072916. https://doi.org/10.1126%2Fscience.1244258
Webster, Guy; Brown, Dwayne (September 26, 2013). "Science Gains From Diverse Landing Area of Curiosity". NASA. Archived from the original on May 2, 2019. Retrieved September 27, 2013. https://web.archive.org/web/20190502194152/http://www.nasa.gov/mission_pages/msl/news/msl20130926.html
Meslin, P.-Y.; et al. (September 26, 2013). "Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars". Science. 341 (6153): 1238670. Bibcode:2013Sci...341E...1M. doi:10.1126/science.1238670. PMID 24072924. S2CID 7418294. https://resolver.sub.uni-goettingen.de/purl?gro-2/129754
Meslin, P.-Y.; et al. (September 26, 2013). "Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars". Science. 341 (6153): 1238670. Bibcode:2013Sci...341E...1M. doi:10.1126/science.1238670. PMID 24072924. S2CID 7418294. https://resolver.sub.uni-goettingen.de/purl?gro-2/129754
Chang, Kenneth (October 1, 2013). "Hitting Pay Dirt on Mars". New York Times. https://www.nytimes.com/2013/10/01/science/space/hitting-pay-dirt-on-mars.html
Stolper, E.M.; Baker, M.B.; Newcombe, M.E.; Schmidt, M.E.; Treiman, A.H.; Cousin, A.; Dyar, M.D.; Fisk, M.R.; Gellert, R.; King, P.L.; Leshin, L.; Maurice, S.; McLennan, S.M.; Minitti, M.E.; Perrett, G.; Rowland, S.; Sautter, V.; Wiens, R.C.; MSL ScienceTeam (2013). "The Petrochemistry of Jake_M: A Martian Mugearite" (PDF). Science. 341 (6153). AAAS: 1239463. Bibcode:2013Sci...341E...4S. doi:10.1126/science.1239463. PMID 24072927. S2CID 16515295. Archived from the original (PDF) on August 11, 2021. Retrieved July 23, 2019. /wiki/Violaine_Sautter
Chang, Kenneth (December 9, 2013). "On Mars, an Ancient Lake and Perhaps Life". The New York Times. Archived from the original on December 9, 2013. Retrieved February 26, 2017. https://www.nytimes.com/2013/12/10/science/space/on-mars-an-ancient-lake-and-perhaps-life.html
Various (December 9, 2013). "Science – Special Collection – Curiosity Rover on Mars". Science. Archived from the original on January 28, 2014. Retrieved June 30, 2022. https://www.science.org/action/doSearch?AllField=Curiosity+Mars
Grotzinger, John P. (January 24, 2014). "Introduction to Special Issue – Habitability, Taphonomy, and the Search for Organic Carbon on Mars". Science. 343 (6169): 386–387. Bibcode:2014Sci...343..386G. doi:10.1126/science.1249944. PMID 24458635. https://doi.org/10.1126%2Fscience.1249944
Various (January 24, 2014). "Special Issue – Table of Contents – Exploring Martian Habitability". Science. 343 (6169): 345–452. Archived from the original on January 29, 2014. Retrieved June 30, 2022. https://www.science.org/toc/science/343/6169
Grotzinger, J.P.; et al. (January 24, 2014). "A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars". Science. 343 (6169): 1242777. Bibcode:2014Sci...343A.386G. CiteSeerX 10.1.1.455.3973. doi:10.1126/science.1242777. PMID 24324272. S2CID 52836398. /wiki/Science_(journal)
Webster, Guy; Neal-Jones, Nancy; Brown, Dwayne (December 16, 2014). "NASA Rover Finds Active and Ancient Organic Chemistry on Mars". NASA. Retrieved December 16, 2014. https://www.jpl.nasa.gov/news/news.php?release=2014-432
Chang, Kenneth (December 16, 2014). "'A Great Moment': Rover Finds Clue That Mars May Harbor Life". New York Times. Retrieved December 16, 2014. https://www.nytimes.com/2014/12/17/science/a-new-clue-in-the-search-for-life-on-mars.html
Mahaffy, P. R.; et al. (December 16, 2014). "Mars Atmosphere – The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars" (PDF). Science. 347 (6220): 412–414. Bibcode:2015Sci...347..412M. doi:10.1126/science.1260291. PMID 25515119. S2CID 37075396. https://authors.library.caltech.edu/52528/7/Mahaffy-SM.pdf
Martín-Torres, F. Javier; Zorzano, María-Paz; Valentín-Serrano, Patricia; Harri, Ari-Matti; Genzer, Maria (April 13, 2015). "Transient liquid water and water activity at Gale crater on Mars". Nature Geoscience. 8 (5): 357–361. Bibcode:2015NatGe...8..357M. doi:10.1038/ngeo2412. https://resolver.sub.uni-goettingen.de/purl?gro-2/129714
Rincon, Paul (April 13, 2015). "Evidence of liquid water found on Mars". BBC News. Retrieved April 15, 2015. https://www.bbc.com/news/science-environment-32287609
Clavin, Whitney (October 8, 2015). "NASA's Curiosity Rover Team Confirms Ancient Lakes on Mars". NASA. Retrieved October 9, 2015. https://www.jpl.nasa.gov/news/news.php?feature=4734
Grotzinger, J.P. (October 9, 2015). "Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars". Science. 350 (6257): aac7575. Bibcode:2015Sci...350.7575G. doi:10.1126/science.aac7575. PMID 26450214. S2CID 586848. https://resolver.caltech.edu/CaltechAUTHORS:20151009-084255932
Geological Society of America (November 3, 2018). "Evidence of outburst flooding indicates plentiful water on early Mars". EurekAlert!. Retrieved November 5, 2018. /wiki/Geological_Society_of_America
Heydari, Ezat; et al. (November 4, 2018). "Significance of Flood Depositis in Gale Crater, Mars". Geological Society of America. Retrieved November 5, 2018. https://gsa.confex.com/gsa/2018AM/webprogram/Paper319960.html
Orosei R, Lauro SE, Pettinelli E, Cicchetti A, Coradini M, Cosciotti B, Di Paolo F, Flamini E, Mattei E, Pajola M, Soldovieri F, Cartacci M, Cassenti F, Frigeri A, Giuppi S, Martufi R, Masdea A, Mitri G, Nenna C, Noschese R, Restano M, Seu R (July 25, 2018). "Radar evidence of subglacial liquid water on Mars". Science. 361 (3699): 490–493. arXiv:2004.04587. Bibcode:2018Sci...361..490O. doi:10.1126/science.aar7268. hdl:11573/1148029. PMID 30045881. S2CID 206666385. /wiki/Science_(journal)
Halton, Mary (July 25, 2018). "Liquid water 'lake' revealed on Mars". BBC News. Retrieved July 25, 2018. https://www.bbc.com/news/science-environment-44952710
"China's 1st Mars rover 'Zhurong' lands on the Red Planet". Space.com. May 15, 2021. https://www.space.com/china-mars-rover-landing-success-tianwen-1-zhurong
Liu, Yang; Wu, Xing; Zhao, Yu-Yan Sara; Pan, Lu; Wang, Chi; Liu, Jia; Zhao, Zhenxing; Zhou, Xiang; Zhang, Chaolin; Wu, Yuchun; Wan, Wenhui; Zou, Yongliao (2022). "Zhurong reveals recent aqueous activities in Utopia Planitia, Mars". Science Advances. 8 (19): eabn8555. Bibcode:2022SciA....8N8555L. doi:10.1126/sciadv.abn8555. PMC 9094648. PMID 35544566. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9094648
Liu, Y., et al. 2022. Zhurong reveals recent aqueous activities in Utopia Planitia, Mars. Science Advances. VOL. 8, NO. 19
Liu, J., et al. 2023. Martian dunes indicative of wind regime shift in line with end of ice age. Nature
"Ocean's worth of water may be buried within Mars — but can we get to it?". Space.com. August 13, 2024. https://www.space.com/the-universe/mars/oceans-worth-of-water-may-be-buried-within-mars-but-can-we-get-to-it
"Mars Hosts a Giant Reservoir of Water Underground, We Just Can't Easily Reach It, Study Finds". https://www.smithsonianmag.com/smart-news/mars-hosts-a-giant-reservoir-of-water-underground-we-just-cant-easily-reach-it-study-finds-180984888/#:~:text=Data%20from%20NASA%27s%20InSight%20lander,7%20and%2013%20miles%20deep