Rhodococci possess many properties that makes them suitable for bioremediation under a range of environments. Their ability to undergo microaerophilic respiration allows them to survive in environments containing low oxygen concentrations, and their ability to undergo aerobic respiration also allows them to survive in oxygenated environments. They also undergo nitrogen fixation, which allows them to generate their own nutrients in environments with low nutrients.
Rhodococci also contain characteristics that enhances their ability to degrade organic pollutants. Their hydrophobic surface allows for adhesion to hydrocarbons, which enhances its ability to degrade these pollutants. They have a wide variety of catabolic pathways and many unique enzyme functions. This gives them the ability to degrade many recalcitrant, toxic hydrocarbons. For example, Rhodococci expresses dioxygenases, which can be used to degrade benzotrifluoride, a recalcitrant pollutant. Rhodococcus sp. strain Q1, a strain naturally found in soil and paper mill sludge, contains the ability to degrade quinoline, various pyridine derivatives, catechol, benzoate, and protocatechuic acid. Rhodococci are also capable of accumulating heavy metal ions, such as radioactive caesium, allowing for easier removal from the environment. Other pollutants, such as azo dyes, pesticides and polychlorinated biphenyls can also be degraded by Rhodococci.
van der Geize R. & L. Dijkhuizen (2004). "Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications". Microbiology. 7 (3): 255–261. doi:10.1016/j.mib.2004.04.001. hdl:11370/a1dfa0fd-dd65-4c1d-b9b4-bfa98038dcbe. PMID 15196492. https://www.rug.nl/research/portal/en/publications/harnessing-the-catabolic-diversity-of-rhodococci-for-environmental-and-biotechnological-applications(a1dfa0fd-dd65-4c1d-b9b4-bfa98038dcbe).html
Burkovski A., ed. (2008). Corynebacteria: Genomics and Molecular Biology. Caister Academic Press. ISBN 978-1-904455-30-1. [1]. 978-1-904455-30-1
McLeod MP, Warren RL, Hsiao WW, Araki N, Mihre M, Fernandes C, Miyazawa D, Wong W, Lillquist AL, Wang D, Dosanjh M, Hara H, Petrescu A, Morin RD, Yang G, Stott JM, Schein JE, Shin H, Smailus D, Siddiqui AS, Marra MA, Jones SJ, Holt R, Brinkman FS, Miyauchi K, Fukuda M, Davies JE, Mohn WW, Eltis LD (October 17, 2006). "The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse". PNAS. 103 (42): 15582–15587. Bibcode:2006PNAS..10315582M. doi:10.1073/pnas.0607048103. PMC 1622865. PMID 17030794. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1622865
McLeod MP, Warren RL, Hsiao WW, Araki N, Mihre M, Fernandes C, Miyazawa D, Wong W, Lillquist AL, Wang D, Dosanjh M, Hara H, Petrescu A, Morin RD, Yang G, Stott JM, Schein JE, Shin H, Smailus D, Siddiqui AS, Marra MA, Jones SJ, Holt R, Brinkman FS, Miyauchi K, Fukuda M, Davies JE, Mohn WW, Eltis LD (October 17, 2006). "The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse". PNAS. 103 (42): 15582–15587. Bibcode:2006PNAS..10315582M. doi:10.1073/pnas.0607048103. PMC 1622865. PMID 17030794. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1622865
van der Geize R. & L. Dijkhuizen (2004). "Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications". Microbiology. 7 (3): 255–261. doi:10.1016/j.mib.2004.04.001. hdl:11370/a1dfa0fd-dd65-4c1d-b9b4-bfa98038dcbe. PMID 15196492. https://www.rug.nl/research/portal/en/publications/harnessing-the-catabolic-diversity-of-rhodococci-for-environmental-and-biotechnological-applications(a1dfa0fd-dd65-4c1d-b9b4-bfa98038dcbe).html
McLeod MP, Warren RL, Hsiao WW, Araki N, Mihre M, Fernandes C, Miyazawa D, Wong W, Lillquist AL, Wang D, Dosanjh M, Hara H, Petrescu A, Morin RD, Yang G, Stott JM, Schein JE, Shin H, Smailus D, Siddiqui AS, Marra MA, Jones SJ, Holt R, Brinkman FS, Miyauchi K, Fukuda M, Davies JE, Mohn WW, Eltis LD (October 17, 2006). "The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse". PNAS. 103 (42): 15582–15587. Bibcode:2006PNAS..10315582M. doi:10.1073/pnas.0607048103. PMC 1622865. PMID 17030794. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1622865
Treadway, S.L., K.S. Yanagimachi, E. Lankenau, P.A. Lessard, G. Stephanopoulos and A.J. Sinskey (1999). "Isolation and characterization of indene bioconversion genes from Rhodococcus strain I24". Appl. Microbiol. Biotechnol. 51 (6): 786–793. doi:10.1007/s002530051463. PMID 10422226. S2CID 6264248.{{cite journal}}: CS1 maint: multiple names: authors list (link) /wiki/Doi_(identifier)
Alvarez, Héctor (2010). Biology of Rhodococcus. Springer Science & Business Media. pp. 231–256. ISBN 9783642129377. 9783642129377
Fuller, M.E.; Perreault, N. (July 8, 2010). "Microaerophilic degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by three Rhodococcus strains". Letters in Applied Microbiology. 51 (3): 313–318. doi:10.1111/j.1472-765x.2010.02897.x. PMID 20666987. https://nrc-publications.canada.ca/eng/view/accepted/?id=2dad1cdf-6506-4f83-a1b7-4d778d6b1517
Blasco, Rafael (2001). "Rhodococcus sp. RB1 grows in the presence of high nitrate and nitrite concentrations and assimilates nitrate in moderately saline environments". Archives of Microbiology. 175 (6): 435–440. doi:10.1007/s002030100285. PMID 11491084. S2CID 864067. /wiki/Doi_(identifier)
Mendez-Volas, A. (2012). Microbes in applied research; current advances and challenges; proceedings. World Scientific. pp. 197–200. ISBN 9789814405034. 9789814405034
Laczi, Krisztián; Kis, Ágnes; Horváth, Balázs; Maróti, Gergely; Hegedüs, Botond (November 2015). "Metabolic responses of Rhodococcus erythropolis PR4 grown on diesel oil and various hydrocarbons" (PDF). Applied Microbiology and Biotechnology. 99 (22): 9745–9759. doi:10.1007/s00253-015-6936-z. PMID 26346267. S2CID 9213608. http://publicatio.bibl.u-szeged.hu/9982/1/Laczi_etal_AMB_2015.pdf
Yano, Kenichi; Wachi, Masaaki; Tsuchida, Sakiko; Kitazume, Tomoya; Iwai, Noritaka (2015). "Degradation of benzotrifluoride via the dioxygenase pathway in Rhodococcus sp. 065240". Bioscience, Biotechnology, and Biochemistry. 79 (3): 496–504. doi:10.1080/09168451.2014.982502. ISSN 1347-6947. PMID 25412819. S2CID 205616972. https://doi.org/10.1080%2F09168451.2014.982502
O'Loughlin, E.J.; Kehrmeyer, S.R.; Sims, G.K. (1996). "Isolation, characterization, and substrate utilization of a quinoline degrading bacterium". International Biodeterioration and Biodegradation. 38 (2): 107–118. doi:10.1016/S0964-8305(96)00032-7. /wiki/Doi_(identifier)
Takei, Takayuki; Yamasaki, Mika; Yoshida, Masahiro (2014-04-01). "Cesium accumulation of Rhodococcus erythropolis CS98 strain immobilized in hydrogel matrices". Journal of Bioscience and Bioengineering. 117 (4): 497–500. doi:10.1016/j.jbiosc.2013.09.013. PMID 24183457. /wiki/Doi_(identifier)
Heiss, G. S.; Gowan, B.; Dabbs, E. R. (1992-12-01). "Cloning of DNA from a Rhodococcus strain conferring the ability to decolorize sulfonated azo dyes". FEMS Microbiology Letters. 78 (2–3): 221–226. doi:10.1016/0378-1097(92)90030-r. ISSN 0378-1097. PMID 1490602. https://doi.org/10.1016%2F0378-1097%2892%2990030-r
Parekh, N. R.; Walker, A.; Roberts, S. J.; Welch, S. J. (November 1994). "Rapid degradation of the triazinone herbicide metamitron by a Rhodococcus sp. isolated from treated soil". The Journal of Applied Bacteriology. 77 (5): 467–475. doi:10.1111/j.1365-2672.1994.tb04389.x. ISSN 0021-8847. PMID 8002472. /wiki/Doi_(identifier)
Boyle, Alfred W.; Silvin, Christopher J.; Hassett, John P.; Nakas, James P.; Tanenbaum, S. W. (1992-06-01). "Bacterial PCB biodegradation". Biodegradation. 3 (2–3): 285–298. doi:10.1007/BF00129089. ISSN 0923-9820. S2CID 7272347. /wiki/Doi_(identifier)
Goethals, K.; Vereecke, D.; Jaziri, M.; Van, Montagu M.; Holsters, M. (2001). "Leafy gall formation by Rhodococcus fascians". Annu. Rev. Phytopathol. 39: 27–52. doi:10.1146/annurev.phyto.39.1.27. PMID 11701858. /wiki/Doi_(identifier)
Muscatello, G.; Leadon, D. P.; Klay, M.; Ocampo-Sosa, A.; Lewis, D. A.; Fogarty, U.; Buckley, T.; Gilkerson, J. R.; Meijer, W. G.; et al. (2007). "Rhodococcus equi infection in foals: the science of 'rattles'". Equine Vet. J. 39 (5): 470–478. doi:10.2746/042516407x209217. PMID 17910275. /wiki/Doi_(identifier)
Salter, S; Cox, M; Turek, E; Calus, S; Cookson, W; Moffatt, M; Turner, P; Parkhill, J; Loman, N; Walker, A (2014). "Reagent contamination can critically impact sequence-based microbiome analyses". bioRxiv 10.1101/007187. /wiki/BioRxiv_(identifier)
Euzéby JP, Parte AC. "Rhodococcus". List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved June 25, 2022. https://lpsn.dsmz.de/genus/rhodococcus
Ramaprasad, E. V. V.; Mahidhara, Ganesh; Sasikala, Ch.; Ramana, Ch. V. (2018). "Rhodococcus electrodiphilus sp. nov., a marine electro active actinobacterium isolated from coral reef". International Journal of Systematic and Evolutionary Microbiology. 68 (8): 2644–2649. doi:10.1099/ijsem.0.002895. PMID 29957174. https://doi.org/10.1099%2Fijsem.0.002895
Rhodococcus jostii was identified as producing a lignin digesting enzyme—the first isolated from a bacterium rather than a fungus.[22][23] /wiki/Lignin
Chaudhary, Dhiraj Kumar; Kim, Jaisoo (2018). "Rhodococcus olei sp. nov., with the ability to degrade petroleum oil, isolated from oil-contaminated soil". International Journal of Systematic and Evolutionary Microbiology. 68 (5): 1749–1756. doi:10.1099/ijsem.0.002750. PMID 29620494. https://doi.org/10.1099%2Fijsem.0.002750