The puzzle is impossible to complete. A domino placed on the chessboard will always cover one white square and one black square. Therefore, any collection of dominoes placed on the board will cover equal numbers of squares of each color. But any two opposite squares have the same color: both black or both white. If they are removed, there will be fewer squares of that color and more of the other color, making the numbers of squares of each color unequal and the board impossible to cover. The same idea shows that no domino tiling can exist whenever any two squares of the same color (not just the opposite corners) are removed from the chessboard.
If two squares of opposite colors are removed, then the remaining board can always be tiled with dominoes; this result is Gomory's theorem, after mathematician Ralph E. Gomory, whose proof was published in 1973. Gomory's theorem can be proven using a Hamiltonian cycle of the grid graph formed by the chessboard squares. The removal of any two oppositely colored squares splits this cycle into two paths with an even number of squares each. Both of these paths are easy to partition into dominoes by following them. Gomory's theorem is specific to the removal of only one square of each color. Removing larger numbers of squares, with equal numbers of each color, can result in a region that has no domino tiling, but for which coloring-based impossibility proofs do not work.
Fowler, R. H.; Rushbrooke, G. S. (1937), "An attempt to extend the statistical theory of perfect solutions", Transactions of the Faraday Society, 33: 1272, doi:10.1039/tf9373301272 /wiki/Ralph_H._Fowler
Erickson, Alejandro; Ruskey, Frank; Schurch, Mark; Woodcock, Jennifer (2010), "Auspicious tatami mat arrangements", in Thai, My T.; Sahni, Sartaj (eds.), Computing and Combinatorics, 16th Annual International Conference, COCOON 2010, Nha Trang, Vietnam, July 19–21, 2010, Proceedings, Lecture Notes in Computer Science, vol. 6196, Springer, pp. 288–297, arXiv:1103.3309, doi:10.1007/978-3-642-14031-0_32, ISBN 978-3-642-14030-3, MR 2720105, S2CID 6603662 978-3-642-14030-3
Black, Max (1946), Critical Thinking: An Introduction To Logic And Scientific Method, Prentice Hall, pp. 157, 433 /wiki/Max_Black
Robinson, J. A. (1991), "Formal and Informal Proofs", in Boyer, Robert S. (ed.), Automated Reasoning: Essays in Honor of Woody Bledsoe, Automated Reasoning Series, vol. 1, Springer Netherlands, pp. 267–282, doi:10.1007/978-94-011-3488-0_13, ISBN 978-94-010-5542-0; see especially Section 13.1, "The mutilated chess board problem", pp. 271–274 Archived 2022-07-18 at the Wayback Machine. 978-94-010-5542-0
Golomb, S. W. (1954), "Checker boards and polyominoes", The American Mathematical Monthly, 61 (10): 675–682, doi:10.1080/00029890.1954.11988548, JSTOR 2307321, MR 0067055 /wiki/Solomon_W._Golomb
Gamow, George; Stern, Marvin (1958), "Domino game", Puzzle-Math, Viking Press, pp. 87–90, ISBN 978-0-333-08637-7 {{citation}}: ISBN / Date incompatibility (help) 978-0-333-08637-7
Robinson, J. A. (1991), "Formal and Informal Proofs", in Boyer, Robert S. (ed.), Automated Reasoning: Essays in Honor of Woody Bledsoe, Automated Reasoning Series, vol. 1, Springer Netherlands, pp. 267–282, doi:10.1007/978-94-011-3488-0_13, ISBN 978-94-010-5542-0; see especially Section 13.1, "The mutilated chess board problem", pp. 271–274 Archived 2022-07-18 at the Wayback Machine. 978-94-010-5542-0
Berge, Claude (1958), Théorie des graphes et ses applications (in French), Dunod, p. 176 /wiki/Claude_Berge
Gardner, Martin (February 1957), "An assortment of maddening puzzles", Mathematical Games, Scientific American, 196 (2): 152–158, doi:10.1038/scientificamerican0257-152, JSTOR 24941903; for solution, see
Gardner, Martin (March 1957), "Some old and new versions of ticktacktoe, plus the answers to last month's puzzles", Mathematical Games, Scientific American, 196 (3): 160–168, doi:10.1038/scientificamerican0357-160, JSTOR 24940785. Reprinted in My Best Mathematical and Logic Puzzles (Dover Publications, 1994), pages 2 and 39. /wiki/Martin_Gardner
McCarthy, John (July 17, 1964), A tough nut for proof procedures, Stanford AI Memo, vol. 16, archived from the original on 2021-05-16, retrieved 2022-07-18 /wiki/John_McCarthy_(computer_scientist)
Kerber, Manfred; Pollet, Martin (2005), "A tough nut for mathematical knowledge management", in Kohlhase, Michael (ed.), Mathematical Knowledge Management, 4th International Conference, MKM 2005, Bremen, Germany, July 15-17, 2005, Revised Selected Papers, Lecture Notes in Computer Science, vol. 3863, Springer, pp. 81–95, doi:10.1007/11618027_6, ISBN 978-3-540-31430-1 978-3-540-31430-1
Kaplan, Craig A.; Simon, Herbert A. (July 1990), "In search of insight", Cognitive Psychology, 22 (3): 374–419, doi:10.1016/0010-0285(90)90008-r, S2CID 54334455 /wiki/Herbert_A._Simon
Akin, Ömer; Akin, Cem (January 1998), "On the process of creativity in puzzles, inventions, and designs", Automation in Construction, 7 (2–3): 123–138, doi:10.1016/s0926-5805(97)00057-5 /wiki/Doi_(identifier)
Bilalić, Merim; Graf, Mario; Vaci, Nemanja; Danek, Amory H. (August 2019), "When the solution is on the doorstep: Better solving performance, but diminished aha! experience for chess experts on the mutilated checkerboard problem", Cognitive Science, 43 (8): e12771, doi:10.1111/cogs.12771, PMID 31446653 /wiki/Cognitive_Science_(journal)
Black, Max (1946), Critical Thinking: An Introduction To Logic And Scientific Method, Prentice Hall, pp. 157, 433 /wiki/Max_Black
MacKenzie, Donald (2005), "Computing and the cultures of proving", Philosophical Transactions of the Royal Society, 363 (1835): 2335–2350, Bibcode:2005RSPTA.363.2335M, doi:10.1098/rsta.2005.1649, JSTOR 30039731, MR 2197653, PMID 16188609, S2CID 18225791 /wiki/Philosophical_Transactions_of_the_Royal_Society
Kerber, Manfred (2014), "A proof and some representations", in Wyatt, Jeremy L.; Petters, Dean D.; Hogg, David C. (eds.), From Animals to Robots and Back: Reflections on Hard Problems in the Study of Cognition, A Collection in Honour of Aaron Sloman, Cognitive Systems Monographs, vol. 22, Springer International Publishing, pp. 65–73, doi:10.1007/978-3-319-06614-1_5, ISBN 978-3-319-06613-4 978-3-319-06613-4
Tanswell, Fenner (2015), "A problem with the dependence of informal proofs on formal proofs", Philosophia Mathematica, Series III, 23 (3): 295–310, doi:10.1093/philmat/nkv008, MR 3404036 /wiki/Philosophia_Mathematica
Starikova, Irina; Van Bendegem, Jean Paul (2021), "Revisiting the mutilated chessboard or the many roles of a picture", Logique et Analyse, 64 (255): 289–312, doi:10.2143/LEA.255.0.3290192, MR 4396339, archived from the original on 2022-07-19, retrieved 2022-07-19 https://www.researchgate.net/publication/341220441
Gardner, Martin (February 1957), "An assortment of maddening puzzles", Mathematical Games, Scientific American, 196 (2): 152–158, doi:10.1038/scientificamerican0257-152, JSTOR 24941903; for solution, see
Gardner, Martin (March 1957), "Some old and new versions of ticktacktoe, plus the answers to last month's puzzles", Mathematical Games, Scientific American, 196 (3): 160–168, doi:10.1038/scientificamerican0357-160, JSTOR 24940785. Reprinted in My Best Mathematical and Logic Puzzles (Dover Publications, 1994), pages 2 and 39. /wiki/Martin_Gardner
Honsberger, R. (1973), "Gomory's theorem", Mathematical Gems I, Mathematical Association of America, pp. 65–67 /wiki/Ross_Honsberger
McCarthy, John (1999), "Creative Solutions to Problems", AISB Workshop on Artificial Intelligence and Creativity, archived from the original on 2018-10-23, retrieved 2007-04-27 /wiki/John_McCarthy_(computer_scientist)
Mendelsohn, N. S. (2004), "Tiling with dominoes", The College Mathematics Journal, 35 (2): 115–120, doi:10.2307/4146865, JSTOR 4146865. Mendelsohn credits the original publication of Gomory's theorem to Honsberger (1973). /wiki/The_College_Mathematics_Journal
Propp, Jim (2021), "Conway's influence on the study of random tilings", The Mathematical Intelligencer, 43 (2): 40–46, doi:10.1007/s00283-021-10089-3, MR 4278473, S2CID 236397105 /wiki/Jim_Propp
Watkins, John J. (2004), Across the Board: The Mathematics of Chessboard Problems, Princeton University Press, pp. 12–14, ISBN 978-0-691-11503-0 978-0-691-11503-0
Honsberger, R. (1973), "Gomory's theorem", Mathematical Gems I, Mathematical Association of America, pp. 65–67 /wiki/Ross_Honsberger
Mendelsohn, N. S. (2004), "Tiling with dominoes", The College Mathematics Journal, 35 (2): 115–120, doi:10.2307/4146865, JSTOR 4146865. Mendelsohn credits the original publication of Gomory's theorem to Honsberger (1973). /wiki/The_College_Mathematics_Journal
Watkins, John J. (2004), Across the Board: The Mathematics of Chessboard Problems, Princeton University Press, pp. 12–14, ISBN 978-0-691-11503-0 978-0-691-11503-0
Wright, Colin (2014), "The mutilated chess board (revisited)" (PDF), Recreational Mathematics Magazine (1): 4–9, MR 3323392, archived (PDF) from the original on 2022-08-08, retrieved 2022-07-18 https://www.solipsys.co.uk/Writings/TheMutilatedChessBoardRevisited.pdf
Propp, Jim (2021), "Conway's influence on the study of random tilings", The Mathematical Intelligencer, 43 (2): 40–46, doi:10.1007/s00283-021-10089-3, MR 4278473, S2CID 236397105 /wiki/Jim_Propp
Thurston, William P. (1990), "Conway's tiling groups", The American Mathematical Monthly, 97 (8): 757–773, doi:10.2307/2324578, JSTOR 2324578, MR 1072815 /wiki/William_Thurston
Wright, Colin (2014), "The mutilated chess board (revisited)" (PDF), Recreational Mathematics Magazine (1): 4–9, MR 3323392, archived (PDF) from the original on 2022-08-08, retrieved 2022-07-18 https://www.solipsys.co.uk/Writings/TheMutilatedChessBoardRevisited.pdf
Urquhart, Alasdair (2003), "Resolution proofs of matching principles", Annals of Mathematics and Artificial Intelligence, 37 (3): 241–250, doi:10.1023/A:1021231610627, MR 1969128, S2CID 6753523 /wiki/Doi_(identifier)
Codel, Cayden R.; Reeves, Joseph E.; Heule, Marijn J. H.; Bryant, Randal E. (2021), "Bipartite perfect matching benchmarks" (PDF), in Balyo, Tomáš; Froleyks, Nils; Heule, Marijn; Iser, Markus; Järvisalo, Matti; Suda, Martin (eds.), Proceedings of SAT Competition 2021: Solver and Benchmark Descriptions, Department of Computer Science Report Series B, vol. B-2021-1, Helsinki: Department of Computer Science, University of Helsinki, pp. 52–53, hdl:10138/333647, archived (PDF) from the original on 2022-07-18, retrieved 2022-07-18 /wiki/Marijn_Heule
de Klerk, Etienne; Van Maaren, Hans; Warners, Joost P. (2000), "Relaxations of the satisfiability problem using semidefinite programming", Journal of Automated Reasoning, 24 (1–2): 37–65, doi:10.1023/A:1006362203438, MR 1750258, S2CID 5727281, archived from the original on 2021-06-20, retrieved 2022-07-19 https://research.tilburguniversity.edu/en/publications/relaxations-of-the-satisfiability-problem-using-semidefinite-prog
McCarthy, John (July 17, 1964), A tough nut for proof procedures, Stanford AI Memo, vol. 16, archived from the original on 2021-05-16, retrieved 2022-07-18 /wiki/John_McCarthy_(computer_scientist)
Andrews, Peter B.; Bishop, Matthew (1996), "On sets, types, fixed points, and checkerboards", in Miglioli, Pierangelo; Moscato, Ugo; Mundici, Daniele; Ornaghi, Mario (eds.), Theorem Proving with Analytic Tableaux and Related Methods, 5th International Workshop, TABLEAUX '96, Terrasini, Palermo, Italy, May 15–17, 1996, Proceedings, Lecture Notes in Computer Science, vol. 1071, Springer, pp. 1–15, doi:10.1007/3-540-61208-4_1, ISBN 978-3-540-61208-7, archived from the original on 2022-07-18, retrieved 2022-07-18, most treatments of the problem in the literature solve it in the conceptual sense, but do not actually provide proofs of the theorem in either of McCarthy's original formulations 978-3-540-61208-7
Dantchev, Stefan S.; Riis, Søren (2001), "'Planar' tautologies hard for resolution", 42nd Annual Symposium on Foundations of Computer Science, FOCS 2001, 14–17 October 2001, Las Vegas, Nevada, USA, IEEE Computer Society, pp. 220–229, doi:10.1109/SFCS.2001.959896, S2CID 18849777, archived from the original on 2022-09-14, retrieved 2022-07-18 https://dro.dur.ac.uk/670/1/
Alekhnovich, Michael (2004), "Mutilated chessboard problem is exponentially hard for resolution", Theoretical Computer Science, 310 (1–3): 513–525, doi:10.1016/S0304-3975(03)00395-5, MR 2020358 /wiki/Theoretical_Computer_Science_(journal)
Razborov, Alexander A. (2004), "Resolution lower bounds for perfect matching principles" (PDF), Journal of Computer and System Sciences, 69 (1): 3–27, doi:10.1016/j.jcss.2004.01.004, MR 2070797, archived (PDF) from the original on 2022-08-08, retrieved 2022-07-19 /wiki/Alexander_Razborov
Korf, Richard E. (1980), "Toward a model of representation changes", Artificial Intelligence, 14 (1): 41–78, doi:10.1016/0004-3702(80)90033-8, MR 0587851 /wiki/Artificial_Intelligence_(journal)
Kerber, Manfred; Pollet, Martin (2005), "A tough nut for mathematical knowledge management", in Kohlhase, Michael (ed.), Mathematical Knowledge Management, 4th International Conference, MKM 2005, Bremen, Germany, July 15-17, 2005, Revised Selected Papers, Lecture Notes in Computer Science, vol. 3863, Springer, pp. 81–95, doi:10.1007/11618027_6, ISBN 978-3-540-31430-1 978-3-540-31430-1
Krishnamurthy, Balakrishnan (1985), "Short proofs for tricky formulas", Acta Informatica, 22 (3): 253–275, doi:10.1007/BF00265682, MR 0806206, S2CID 2459540 /wiki/Acta_Informatica
Heule, Marijn J. H.; Kiesl, Benjamin; Biere, Armin (2019), "Clausal proofs of mutilated chessboards", in Badger, Julia M.; Rozier, Kristin Yvonne (eds.), NASA Formal Methods – 11th International Symposium, NFM 2019, Houston, TX, USA, May 7–9, 2019, Proceedings, Lecture Notes in Computer Science, vol. 11460, Springer, pp. 204–210, doi:10.1007/978-3-030-20652-9_13, ISBN 978-3-030-20651-2, S2CID 92989148 978-3-030-20651-2
Paulson, Lawrence C. (2001), "A simple formalization and proof for the mutilated chess board" (PDF), Logic Journal of the IGPL, 9 (3): 475–485, doi:10.1093/jigpal/9.3.475, MR 1828741, archived (PDF) from the original on 2022-08-08, retrieved 2022-07-18 https://www.cl.cam.ac.uk/~lp15/papers/Reports/mutil.pdf
Rudnicki, Piotr (1996), The Mutilated Checkerboard Problem in the Lightweight Set Theory of Mizar, Technical Report, vol. TR96-09, University of Alberta Department of Computer Science, doi:10.7939/R3QV3C738, archived from the original on 2022-07-18, retrieved 2022-07-18 https://era.library.ualberta.ca/items/ae7346a0-6a95-433b-bb8c-5a35900329d1
Subramanian, Sakthi (1996), "An interactive solution to the
n
×
n
{\displaystyle n\times n}
mutilated checkerboard problem", Journal of Logic and Computation, 6 (4): 573–598, doi:10.1093/logcom/6.4.573, MR 1406233 /wiki/Journal_of_Logic_and_Computation
Bivens, Irl C.; Holshouser, Arthur L.; Klein, Benjamin G. (October 2008), "Wazir circuits on an obstructed chessboard", Mathematics Magazine, 81 (4): 276–284, doi:10.1080/0025570X.2008.11953562, JSTOR 27643123, S2CID 125950546 /wiki/Mathematics_Magazine
Hanson, Mary Grace; Nash, David A. (Spring 2018), "Minimal and maximal Numbrix puzzles", Pi Mu Epsilon Journal, 14 (8): 505–514, arXiv:1706.09389 /wiki/Pi_Mu_Epsilon_Journal
de Bruijn, N. G. (1969), "Filling boxes with bricks", The American Mathematical Monthly, 76 (1): 37–40, doi:10.2307/2316785, JSTOR 2316785, MR 0234841 /wiki/Nicolaas_Govert_de_Bruijn