The air in the cave is extremely different from the outer atmosphere. The level of oxygen is only a third to half of the concentration found in open air (7–10% O2 in the cave atmosphere, compared to 21% O2 in air), and about 100 times more carbon dioxide (2–3.5% CO2 in the cave atmosphere, versus 0.04% CO2 in air). It also contains 1–2% methane (CH4) and both the air and waters of the cave contain high concentrations of hydrogen sulfide (H2S) and ammonia (NH3). The lake waters only contain as little as 1 mm of dissolved O2, and up to 1 cm of dissolved O2 at most. As depth increases in the lake, the water becomes completely anoxic.
Movile Cave is chemically characterized by high concentrations of sulfide, with levels reaching up to 500 μM. This highly anaerobic, sulfur-rich environment shares several similarities with deep-sea hydrothermal vents, where sulfur oxidation plays a central role in energy production. The cave's biochemical processes are driven by aerobic elemental sulfur-oxidizing bacteria, which serve as the primary producers of biomass for the ecosystem.
The organisms within Movile Cave have gained unique adaptations in order to survive its extreme chemosynthetic environment. Many of these species lack functional eyes, as vision is not necessary in complete darkness. As a replacement, many species develop enhanced mechanosensory and chemosensory awareness that enables species to detect food and move in the darkness.
Due to the high concentration of toxic gases, many organisms have developed physiological mechanisms in order to tolerate the elevated carbon dioxide and hydrogen sulfide levels. Some species exhibit specialized respiratory adaptations that increase the efficiency of oxygen extraction from the cave's low oxygen atmosphere.
These features not only better our understanding of life in extreme environments on earth, but also have provide insight into the possibility of microbial life in extraterrestrial subsurface environments.
Among the key species found in Movile Cave are leeches, troglobitic (species that only live in caves and have fully adapted to it) centipedes, and cave-adapted spiders. Many of these organisms are reliant on the microbial production of chemosynthetic bacteria, with grazers feeding on bacterial biofilms and higher level consumers preying on the primary consumers.
Due to the sealed environment of the cave, trophic chains present are extremely simple in comparison to comparable food webs aboveground. Its base is made up of bacterial biofilms, which are taken up by
These primary consumers are then predated on by secondary consumers and top predators, including:
The largest species diversity and density within the cave is found within the "Lake Room", containing many species of millipedes (Archiboreoiulus serbansarbui, Strongylosoma jaqueti), isopods (Trachelipus troglobius), and water scorpions (Nepa anophthalma), likely due to the presence of O2 in the chamber. In contrast, primarily isopods (Caucasonethes vandeli pygmaeus, Armadillidium tabacarui) are found in oxygen absent chambers.
The Movile Cave represents a distinct habitat that shelters a multidisciplinary community of microbial eukaryotes adapted to very specific low-oxygen, high-sulfide, and methane-saturated environments. Their significance in ecosystem stability is as a result of their communities and association with chemosynthetic bacteria and archaea.
The Movile Cave's unique groundwater system supports a complex community of chemoautotrophic primary producers. The different "rooms" of the cave have distinctive chemo-physiological conditions, allowing for the cultivation of unique bacterial genera in each environment.
The surface waters and most of the cave walls are covered in varying sizes of bacterial biofilms ranging from small, white floating patches in the Lake Room and Air-bell I to yellowish biofilms up to 2 cm thick found in Air-bell II. Because of differing atmospheric conditions throughout the cave, the sizes and community compositions of biofilms are significantly different and results in metabolically-related microbial communities forming at specific cave sites. Preliminary studies of cave microbial mats revealed metabolically active methylotrophs and sulfur oxidizers, suggesting a lithotrophy-dominated ecosystem. Kumaseran et al. discovered the representative species Ca. Methylomas sp. LWB in microbial mats, presenting evidence for aerobic methylotrophy in the cave. Similar studies by Aerts et al. found complex groups of unique genera in biofilm samples collected at 3 sub-locations: from floating (1) and wall biofilms in Air-bell II (2), and from submerged biofilms on rocks below Air-Bell I (3). The identified microbial community from those samples are dominated by unique chemoautotrophic genera:
Cave lake water samples reveal an equally complex microbial ecosystem of methanotrophs and sulfur-oxidizers, providing substrates to support life for microbes and invertebrates. Methanotrophic strains belonging to genera Methylomonas, Methylococcus, Methylocystis/Methylosinus were found to be dominant methanotrophs in water samples and encode key methane monooxygenase genes, pmoA and mmoX. Members of the sulfur-oxidizer genera Thiovulum were much more abundant and more metabolically active in Air-bell II than the Lake Room, but are dominant in both hypoxic and normoxic cave lake waters. The newly proposed species Ca. Thiovulum stygium is found to possess nitrate reduction operons (nar and nap) as well as polysulfide reductase and sulfite exporter genes (nrfD and tauE respectively), suggesting its multifunctionality as an aerobic and anaerobic sulfide oxidation. Surface waters in the Lake Room had a diverse community of genera Sphingobacterium, Stenotrophomonas and Thiovirga, while deep waters between Air-bell I and II had a high concentration of acidophilic species, mostly related to the genus Acinetobacter.
Although Movile Cave sediments were initially thought to be mostly anoxic, recent metagenomic analyses reveal potential for microoxic sedimentary environments, primarily driven by chemolithoautotrophic processes and microbial commensalism. High abundances of microorganisms belonging to the aerobic iron-oxidizing bacterial family Gallionellaceae were found in sediment samples, specifically members of the genera Sideroxydans and Gallionella. This discovery, along with the detection of methane monooxygenase genes, suggested the possibility of proteobacterial aerobic methylotrophy as a relevant metabolic pathway for sedimentary bacterial communities.
Sedimentary microbial communities can differ depending on their proximity to Movile Cave lakewater and cultivates microniches with varying metabolic relationships. Sulfur oxidation is found to be dominant processes in lakeside sediments, evidenced by complete pathways present in the order Thiohalomonadales and family Arcobateraceae. Products of sulfur respiration coupled with hydrogen sulfide were found in lake-distant samples, however a full oxidation pathway could not be metagenomically assembled. Nitrogen respiration and denitrification are also key metabolic drivers in Movile Cave sediments, though most pathways are incomplete. In lake-proximal samples, genes encoding ammonia monooxygenase subunits were related to the order Methylococcales. Genes for the first and second steps of dissimilatory nitrogen reduction to ammonia (DNRA) were found in lake-proximal and -distal samples, and closely associated with phyla Acidobacteriota, Planctomycetota and Gammaproteobacteria
Genes associated with methane (CH4) and carbon dioxide (CO2) fixation have been found at both lake-distal and lake-proximal sediments. All subunits of particulate methane monooxygenase (pMMO) could be encoded from genes related to the family Methylococcales, thus suggesting the potential of methanotrophy occurring in the cave. Predictive gene associations have also linked CO2 fixation processes with several taxonomic classes:
Movile Cave hosts a wide range of eukaryotic organisms such as fungi and protists, which are the key eukaryotic groups within microbial mats. Protists are mainly involved as decomposers and oxygen producers within the Movile cave. The most dominant eukaryotic supergroups in Movile cave include Ciliates (Alveolata), Stramenophiles (Bicosoecids) and Excavata (Jakobids). Within these groups, Alveolata and Strameophiles is revealed to be more abundant in microbial mats, while Excavata primarily dominated the plankton fraction of the oxygen-depleted water column.
A total of 123 microfungal species have been identified within the Movile Cave ecosystem, with a notably high occurrence of microfungal spores. Of these, 96 species were detected exclusively inside the cave. 90 species were found in the dry sections, including 51 from cave air, 42 from cave sediments, and 41 from various substrates such as dead invertebrates, corroded cave walls, and isopod feces. Airbell II contained 28 fungal species in which 23 species were present in sediments and 9 in the floating microbial mat. While most fungal species were widely distributed across the cave's underground habitats, two species including an undescribed species of Aspergillus sect. Candidisa and Talaromyces ruber were found exclusively in the sediments of Airbell II, while one species was found exclusively in the microbial mat in Airbell II. Due to a lack of fungal surveys following the cave's initial discovery in 1986, it remains uncertain whether these fungi are native or were introduced through contamination by researchers.
Some organisms in Movile Cave, including some invertebrate species, are dependent on symbiotic associates with chemosynthetic microorganisms. Some species, including cave-adapted isopods and leeches directly feed on microbial biofilms via their mouths, while others host endosymbiotic bacteria in their guts which aid both digestion and nutrient absorption.
Resident microorganisms of Movile Cave have both mutualistic and competitive interactions that balance the ecosystem equilibrium. Mutualism is evident between certain microbial populations, mainly the chemosynthetic bacteria, with these organisms being primarily involved in nutrient cycling. For example, the sulfur-oxidizing bacteria such as Beggiatoa and Thiobacillus oxidize hydrogen sulfide to sulfate, providing materials needed by other microbial communities . Similarly, Methanotrophic bacteria like Methylomonas oxidize methane and contribute organic carbon to heterotrophic microorganisms .These cooperative interactions create stable microbial mats, the high-energy foundation of the cave food web.
The long-term isolation of Movile Cave has led to unique evolutionary adaptations of its microorganisms and eukaryotic communities. That means they have undergone genetic divergence in small isolated populations and established novel symbioses, such as between invertebrates and sulphur-oxidizing bacteria. Studying these systems provides insights into the early evolution of eukaryotes with an interest in protists adapted to anoxic conditions. In this respect, Movile Cave also provides an excellent terrestrial analogue for deep-sea hydrothermal vents and extraterrestrial ecosystems, favouring the scenario of life existing subsurface beneath moons like Europa or Enceladus.
Fox-Skelly, Jasmin (4 September 2015). "The bizarre beasts living in Romania's poison cave". BBC Earth. Archived from the original on 31 May 2021. https://web.archive.org/web/20210531110415/https://www.bbc.com/earth/story/20150904-the-bizarre-beasts-living-in-romanias-poison-cave
Fox-Skelly, Jasmin (4 September 2015). "The bizarre beasts living in Romania's poison cave". BBC Earth. Archived from the original on 31 May 2021. https://web.archive.org/web/20210531110415/https://www.bbc.com/earth/story/20150904-the-bizarre-beasts-living-in-romanias-poison-cave
Sârbu, Şerban M. "The fascinating biology of stinky caves", - ARPHA Conference Abstracts, 25th International Conference on Subterranean Biology, Cluj-Napoca, 18-22 July 2022. Re-accessed 23 March 2024. https://aca.pensoft.net/article/87132/
Chiciudean, I., Russo, G., Bogdan, D.F. et al. "Competition-cooperation in the chemoautotrophic ecosystem of Movile Cave: first metagenomic approach on sediments." Environmental Microbiome 17, 44 (2022). Permanent doi.org/10.1186/s40793-022-00438-w. Re-accessed 23 March 2024. https://environmentalmicrobiome.biomedcentral.com/articles/10.1186/s40793-022-00438-w
Kumaresan, Deepak; Wischer, Daniela; Stephenson, Jason; Hillebrand-Voiculescu, Alexandra Maria (January 2014). "Microbiology of Movile Cave — A Chemolithoautotrophic Ecosystem". Geomicrobiology. 31 (3): 186. Bibcode:2014GmbJ...31..186K. doi:10.1080/01490451.2013.839764. S2CID 84472119. Retrieved 10 March 2023. https://www.researchgate.net/publication/259974446
"Movile Cave". GESS LAB, Mangalia. Retrieved 10 March 2023. https://www.gesslab.org/movile-cave
Kumaresan, Deepak; and Murrell, J. Colin (2014-03-16). "Microbiology of Movile Cave—A Chemolithoautotrophic Ecosystem". Geomicrobiology Journal. 31 (3): 186–193. Bibcode:2014GmbJ...31..186K. doi:10.1080/01490451.2013.839764. ISSN 0149-0451. {{cite journal}}: |first2= missing |last2= (help); |first3= missing |last3= (help); |first4= missing |last4= (help)CS1 maint: multiple names: authors list (link) https://www.tandfonline.com/doi/abs/10.1080/01490451.2013.839764
Kumaresan, Deepak; and Murrell, J. Colin (2014-03-16). "Microbiology of Movile Cave—A Chemolithoautotrophic Ecosystem". Geomicrobiology Journal. 31 (3): 186–193. Bibcode:2014GmbJ...31..186K. doi:10.1080/01490451.2013.839764. ISSN 0149-0451. {{cite journal}}: |first2= missing |last2= (help); |first3= missing |last3= (help); |first4= missing |last4= (help)CS1 maint: multiple names: authors list (link) https://www.tandfonline.com/doi/abs/10.1080/01490451.2013.839764
Flot, Jean-François; Bauermeister, Jan; Brad, Traian; Hillebrand-Voiculescu, Alexandra; Sarbu, Serban M.; Dattagupta, Sharmishtha (2014). "iphargus–hiothrix associations may be widespread in sulphidic groundwater ecosystems: evidence from southeastern Romania". Molecular Ecology. 23 (6): 1405–1417. Bibcode:2014MolEc..23.1405F. doi:10.1111/mec.12461. ISSN 1365-294X. PMC 4282457. PMID 24044653. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4282457
Hutchens, Elena; Radajewski, Stefan; Dumont, Marc G.; McDonald, Ian R.; Murrell, J. Colin (2004). "Analysis of methanotrophic bacteria in Movile Cave by stable isotope probing". Environmental Microbiology. 6 (2): 111–120. Bibcode:2004EnvMi...6..111H. doi:10.1046/j.1462-2920.2003.00543.x. ISSN 1462-2920. PMID 14756876. https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1046/j.1462-2920.2003.00543.x
Rohwerder, T.; Sand, W.; Lascu, C. (2003). "Preliminary Evidence for a Sulphur Cycle in Movile Cave, Romania". Acta Biotechnologica. 23 (1): 101–107. doi:10.1002/abio.200390000. ISSN 1521-3846. https://onlinelibrary.wiley.com/doi/10.1002/abio.200390000
Rohwerder, T.; Sand, W.; Lascu, C. (2003). "Preliminary Evidence for a Sulphur Cycle in Movile Cave, Romania". Acta Biotechnologica. 23 (1): 101–107. doi:10.1002/abio.200390000. ISSN 1521-3846. https://onlinelibrary.wiley.com/doi/10.1002/abio.200390000
Chen, Yin; Wu, Liqin; Boden, Rich; Hillebrand, Alexandra; Kumaresan, Deepak; Moussard, Hélène; Baciu, Mihai; Lu, Yahai; Colin Murrell, J (2009-09-01). "Life without light: microbial diversity and evidence of sulfur- and ammonium-based chemolithotrophy in Movile Cave". The ISME Journal. 3 (9): 1093–1104. Bibcode:2009ISMEJ...3.1093C. doi:10.1038/ismej.2009.57. ISSN 1751-7362. PMID 19474813. https://academic.oup.com/ismej/article/3/9/1093/7588293
Sarbu, S. M.; and Popa, R. (1994-07-01). "Microbiological characterization of a sulfide-rich groundwater ecosystem". Geomicrobiology Journal. 12 (3): 175–182. Bibcode:1994GmbJ...12..175S. doi:10.1080/01490459409377984. ISSN 0149-0451. {{cite journal}}: |first2= missing |last2= (help); |first3= missing |last3= (help); |first4= missing |last4= (help)CS1 maint: multiple names: authors list (link) https://www.tandfonline.com/doi/abs/10.1080/01490459409377984
Brad, Traian; Iepure, Sanda; Sarbu, Serban (2021-03-17). "The Chemoautotrophically Based Movile Cave Groundwater Ecosystem, a Hotspot of Subterranean Biodiversity". Diversity. 13 (3): 128. Bibcode:2021Diver..13..128B. doi:10.3390/d13030128. ISSN 1424-2818. https://doi.org/10.3390%2Fd13030128
GESS Lab. (2020). Movile Cave - a unique ecosystem. Gesslab. https://www.gesslab.org/movile-cave https://www.gesslab.org/movile-cave
GESS Lab. (2020a). List of invertebrate species encountered and described in the Movile Cave ecosystem.
Nag, Oishimaya Sen (25 April 2017). "Movile Cave - An Oddity Of Romania". WorldAtlas. https://www.worldatlas.com/articles/movile-cave-an-oddity-of-romania.html
Karen Graham: Movile Cave in Romania has an ecosystem unlike any other on Earth. In: DigitalJournal. 25 May 2016. Source: Science http://www.digitaljournal.com/science/movile-cave-in-romania-has-an-ecosystem-unlike-any-other-on-earth/article/466274
* Varpu Vahtera, Pavel Stoev, Nesrine Akkari: Five million years in the darkness: A new troglomorphic species of Cryptops Leach, 1814 (Chilopoda, Scolopendromorpha) from Movile Cave, Romania. On: ZooKeys 1004: pp 1-26. doi:10.3897/zookeys.1004.58537 (16 December 2020). See also:
David Nield: Meet The 'King' of a Toxic Underground Ecosystem Unlike Anywhere Else on Earth. On: sciencealert. 19 December 2020. About Cryptops speleorex, the cave dwelling sister species of C. hortensis, Cryptopidae
New Centipede Discovered on Top of Food Chain in Hellish Ecosystem of a Sulfur-Soaked Romanian Cave. On: SciTechDaily. December 16, 2020
https://zookeys.pensoft.net/article/58537/element/8/5352
Decu, Vasile; Gruia, Magdalena; Keffer, S. L.; Sarbu, Serban Mircea (1 November 1994). "Stygobiotic Waterscorpion, Nepa anophthalma, n. sp. (Heteroptera: Nepidae), from a Sulfurous Cave in Romania". Annals of the Entomological Society of America. 87 (6): 755–761. doi:10.1093/aesa/87.6.755. /wiki/Doi_(identifier)
Andrzej Falniowski, Magdalena Szarowska, Ioan Sirbu, Alexandra Hillebrand, Mihai Baciu: Heleobia dobrogica (Grossu & Negrea, 1989)(Gastropoda: Rissooidea: Cochliopidae) and the estimated time of its isolation in a continental analogue of hydrothermal vents. In: Molluscan Research 28(3): pp 165-170. 22 Dec 2008. ISSN 1323-5818 https://www.mapress.com/mr/content/v28/2008f/n3p170.htm
GESS Lab. (2020). Movile Cave - a unique ecosystem. Gesslab. https://www.gesslab.org/movile-cave https://www.gesslab.org/movile-cave
GESS Lab. (2020a). List of invertebrate species encountered and described in the Movile Cave ecosystem.
Nag, Oishimaya Sen (25 April 2017). "Movile Cave - An Oddity Of Romania". WorldAtlas. https://www.worldatlas.com/articles/movile-cave-an-oddity-of-romania.html
Fox-Skelly, Jasmin (4 September 2015). "The bizarre beasts living in Romania's poison cave". BBC Earth. Archived from the original on 31 May 2021. https://web.archive.org/web/20210531110415/https://www.bbc.com/earth/story/20150904-the-bizarre-beasts-living-in-romanias-poison-cave
Andrzej Falniowski, Magdalena Szarowska, Ioan Sirbu, Alexandra Hillebrand, Mihai Baciu: Heleobia dobrogica (Grossu & Negrea, 1989)(Gastropoda: Rissooidea: Cochliopidae) and the estimated time of its isolation in a continental analogue of hydrothermal vents. In: Molluscan Research 28(3): pp 165-170. 22 Dec 2008. ISSN 1323-5818 https://www.mapress.com/mr/content/v28/2008f/n3p170.htm
Brad, Traian; Iepure, Sanda; Sarbu, Serban (2021-03-17). "The Chemoautotrophically Based Movile Cave Groundwater Ecosystem, a Hotspot of Subterranean Biodiversity". Diversity. 13 (3): 128. Bibcode:2021Diver..13..128B. doi:10.3390/d13030128. ISSN 1424-2818. https://doi.org/10.3390%2Fd13030128
Poulson, Thomas L.; White, William B. (1969-09-05). "The Cave Environment". Science. 165 (3897): 971–981. Bibcode:1969Sci...165..971P. doi:10.1126/science.165.3897.971. PMID 17791021. https://www.science.org/doi/10.1126/science.165.3897.971
Culver, David C.; Pipan, Tanja (2007-01-01), "Subterranean Ecosystems", in Levin, Simon Asher (ed.), Encyclopedia of Biodiversity, New York: Elsevier, pp. 1–19, doi:10.1016/b0-12-226865-2/00262-5, ISBN 978-0-12-226865-6, retrieved 2025-04-09 978-0-12-226865-6
Sarbu, S. M.; and Popa, R. (1994-07-01). "Microbiological characterization of a sulfide-rich groundwater ecosystem". Geomicrobiology Journal. 12 (3): 175–182. Bibcode:1994GmbJ...12..175S. doi:10.1080/01490459409377984. ISSN 0149-0451. {{cite journal}}: |first2= missing |last2= (help); |first3= missing |last3= (help); |first4= missing |last4= (help)CS1 maint: multiple names: authors list (link) https://www.tandfonline.com/doi/abs/10.1080/01490459409377984
Brad, Traian; Iepure, Sanda; Sarbu, Serban (2021-03-17). "The Chemoautotrophically Based Movile Cave Groundwater Ecosystem, a Hotspot of Subterranean Biodiversity". Diversity. 13 (3): 128. Bibcode:2021Diver..13..128B. doi:10.3390/d13030128. ISSN 1424-2818. https://doi.org/10.3390%2Fd13030128
Brad, Traian; Iepure, Sanda; Sarbu, Serban (2021-03-17). "The Chemoautotrophically Based Movile Cave Groundwater Ecosystem, a Hotspot of Subterranean Biodiversity". Diversity. 13 (3): 128. Bibcode:2021Diver..13..128B. doi:10.3390/d13030128. ISSN 1424-2818. https://doi.org/10.3390%2Fd13030128
Decu, Vasile; Gruia, Magdalena; Keffer, S. L.; Sarbu, Serban Mircea (1 November 1994). "Stygobiotic Waterscorpion, Nepa anophthalma, n. sp. (Heteroptera: Nepidae), from a Sulfurous Cave in Romania". Annals of the Entomological Society of America. 87 (6): 755–761. doi:10.1093/aesa/87.6.755. /wiki/Doi_(identifier)
Brad, Traian; Iepure, Sanda; Sarbu, Serban (2021-03-17). "The Chemoautotrophically Based Movile Cave Groundwater Ecosystem, a Hotspot of Subterranean Biodiversity". Diversity. 13 (3): 128. Bibcode:2021Diver..13..128B. doi:10.3390/d13030128. ISSN 1424-2818. https://doi.org/10.3390%2Fd13030128
Brad, Traian; Iepure, Sanda; Sarbu, Serban (2021-03-17). "The Chemoautotrophically Based Movile Cave Groundwater Ecosystem, a Hotspot of Subterranean Biodiversity". Diversity. 13 (3): 128. Bibcode:2021Diver..13..128B. doi:10.3390/d13030128. ISSN 1424-2818. https://doi.org/10.3390%2Fd13030128
Kumaresan, Deepak; Stephenson, Jason; Doxey, Andrew C.; Bandukwala, Hina; Brooks, Elliot; Hillebrand-Voiculescu, Alexandra; Whiteley, Andrew S.; Murrell, J Colin (2018-01-02). "Aerobic proteobacterial methylotrophs in Movile Cave: genomic and metagenomic analyses". Microbiome. 6 (1): 1. doi:10.1186/s40168-017-0383-2. ISSN 2049-2618. PMC 5748958. PMID 29291746. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5748958
Aerts, Joost W.; Sarbu, Serban M.; Brad, Traian; Ehrenfreund, Pascale; Westerhoff, Hans V. (2023-10-26). "Microbial Ecosystems in Movile Cave: An Environment of Extreme Life". Life. 13 (11): 2120. Bibcode:2023Life...13.2120A. doi:10.3390/life13112120. ISSN 2075-1729. PMC 10672346. PMID 38004260. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10672346
Kumaresan, Deepak; Stephenson, Jason; Doxey, Andrew C.; Bandukwala, Hina; Brooks, Elliot; Hillebrand-Voiculescu, Alexandra; Whiteley, Andrew S.; Murrell, J Colin (2018-01-02). "Aerobic proteobacterial methylotrophs in Movile Cave: genomic and metagenomic analyses". Microbiome. 6 (1): 1. doi:10.1186/s40168-017-0383-2. ISSN 2049-2618. PMC 5748958. PMID 29291746. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5748958
Rohwerder, T.; Sand, W.; Lascu, C. (2003). "Preliminary Evidence for a Sulphur Cycle in Movile Cave, Romania". Acta Biotechnologica. 23 (1): 101–107. doi:10.1002/abio.200390000. ISSN 1521-3846. https://onlinelibrary.wiley.com/doi/10.1002/abio.200390000
Kumaresan, Deepak; Stephenson, Jason; Doxey, Andrew C.; Bandukwala, Hina; Brooks, Elliot; Hillebrand-Voiculescu, Alexandra; Whiteley, Andrew S.; Murrell, J Colin (2018-01-02). "Aerobic proteobacterial methylotrophs in Movile Cave: genomic and metagenomic analyses". Microbiome. 6 (1): 1. doi:10.1186/s40168-017-0383-2. ISSN 2049-2618. PMC 5748958. PMID 29291746. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5748958
Aerts, Joost W.; Sarbu, Serban M.; Brad, Traian; Ehrenfreund, Pascale; Westerhoff, Hans V. (2023-10-26). "Microbial Ecosystems in Movile Cave: An Environment of Extreme Life". Life. 13 (11): 2120. Bibcode:2023Life...13.2120A. doi:10.3390/life13112120. ISSN 2075-1729. PMC 10672346. PMID 38004260. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10672346
Zhao, Ying; Zhu, Shanshan; Fan, Xuan; Zhang, Xuxiang; Ren, Hongqiang; Huang, Hui (2022-11-25). "Precise portrayal of microscopic processes of wastewater biofilm formation: Taking SiO2 as the model carrier". Science of the Total Environment. 849: 157776. doi:10.1016/j.scitotenv.2022.157776. ISSN 0048-9697. PMID 35926593. https://linkinghub.elsevier.com/retrieve/pii/S0048969722048756
Doronina, Nina; Kaparullina, Elena; Trotsenko, Yuri (2014), Rosenberg, Eugene; DeLong, Edward F.; Lory, Stephen; Stackebrandt, Erko (eds.), "The Family Methylophilaceae", The Prokaryotes: Alphaproteobacteria and Betaproteobacteria, Berlin, Heidelberg: Springer, pp. 869–880, doi:10.1007/978-3-642-30197-1_243, ISBN 978-3-642-30197-1, retrieved 2025-04-08 978-3-642-30197-1
Brenner, Don J.; Krieg, Noel R.; Staley, James T.; Garrity, George M., eds. (2005). Bergey's Manual of Systematic Bacteriology. doi:10.1007/0-387-28021-9. ISBN 978-0-387-24143-2. {{cite book}}: |work= ignored (help) 978-0-387-24143-2
Heising, Silke; Schink, Bernhard (1998). "Phototrophic oxidation of ferrous iron by a Rhodomicrobium vannielii strain". Microbiology. 144 (8): 2263–2269. doi:10.1099/00221287-144-8-2263. ISSN 1465-2080. PMID 9720049. https://doi.org/10.1099%2F00221287-144-8-2263
Abraham, Wolf-Rainer; Strömpl, Carsten; Vancanneyt, Marc; Bennasar, Antonio; Swings, Jean; Lünsdorf, Heinrich; Smit, John; Moore, Edward R. B. (2004). "Woodsholea maritima gen. nov., sp. nov., a marine bacterium with a low diversity of polar lipids". International Journal of Systematic and Evolutionary Microbiology. 54 (4): 1227–1234. doi:10.1099/ijs.0.02943-0. ISSN 1466-5034. PMID 15280296. https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.02943-0
Daims, Holger (2014), Rosenberg, Eugene; DeLong, Edward F.; Lory, Stephen; Stackebrandt, Erko (eds.), "The Family Nitrospiraceae", The Prokaryotes: Other Major Lineages of Bacteria and The Archaea, Berlin, Heidelberg: Springer, pp. 733–749, doi:10.1007/978-3-642-38954-2_126, ISBN 978-3-642-38954-2, retrieved 2025-04-08 978-3-642-38954-2
Hutchens, Elena; Radajewski, Stefan; Dumont, Marc G.; McDonald, Ian R.; Murrell, J. Colin (2004). "Analysis of methanotrophic bacteria in Movile Cave by stable isotope probing". Environmental Microbiology. 6 (2): 111–120. Bibcode:2004EnvMi...6..111H. doi:10.1046/j.1462-2920.2003.00543.x. ISSN 1462-2920. PMID 14756876. https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1046/j.1462-2920.2003.00543.x
Bizic, Mina; Brad, Traian; Ionescu, Danny; Barbu-Tudoran, Lucian; Zoccarato, Luca; Aerts, Joost W; Contarini, Paul-Emile; Gros, Olivier; Volland, Jean-Marie; Popa, Radu; Ody, Jessica; Vellone, Daniel; Flot, Jean-François; Tighe, Scott; Sarbu, Serban M (2023-03-01). "Cave Thiovulum (Candidatus Thiovulum stygium) differs metabolically and genomically from marine species". The ISME Journal. 17 (3): 340–353. Bibcode:2023ISMEJ..17..340B. doi:10.1038/s41396-022-01350-4. ISSN 1751-7362. PMC 9938260. PMID 36528730. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9938260
Bizic, Mina; Brad, Traian; Ionescu, Danny; Barbu-Tudoran, Lucian; Zoccarato, Luca; Aerts, Joost W; Contarini, Paul-Emile; Gros, Olivier; Volland, Jean-Marie; Popa, Radu; Ody, Jessica; Vellone, Daniel; Flot, Jean-François; Tighe, Scott; Sarbu, Serban M (2023-03-01). "Cave Thiovulum (Candidatus Thiovulum stygium) differs metabolically and genomically from marine species". The ISME Journal. 17 (3): 340–353. Bibcode:2023ISMEJ..17..340B. doi:10.1038/s41396-022-01350-4. ISSN 1751-7362. PMC 9938260. PMID 36528730. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9938260
Aerts, Joost W.; Sarbu, Serban M.; Brad, Traian; Ehrenfreund, Pascale; Westerhoff, Hans V. (2023-10-26). "Microbial Ecosystems in Movile Cave: An Environment of Extreme Life". Life. 13 (11): 2120. Bibcode:2023Life...13.2120A. doi:10.3390/life13112120. ISSN 2075-1729. PMC 10672346. PMID 38004260. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10672346
Chiciudean, Iulia; Russo, Giancarlo; Bogdan, Diana Felicia; Levei, Erika Andrea; Faur, Luchiana; Hillebrand-Voiculescu, Alexandra; Moldovan, Oana Teodora; Banciu, Horia Leonard (2022-08-17). "Competition-cooperation in the chemoautotrophic ecosystem of Movile Cave: first metagenomic approach on sediments". Environmental Microbiome. 17 (1): 44. Bibcode:2022EMicb..17...44C. doi:10.1186/s40793-022-00438-w. ISSN 2524-6372. PMC 9386943. PMID 35978381. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9386943
Kumaresan, Deepak; Stephenson, Jason; Doxey, Andrew C.; Bandukwala, Hina; Brooks, Elliot; Hillebrand-Voiculescu, Alexandra; Whiteley, Andrew S.; Murrell, J Colin (2018-01-02). "Aerobic proteobacterial methylotrophs in Movile Cave: genomic and metagenomic analyses". Microbiome. 6 (1): 1. doi:10.1186/s40168-017-0383-2. ISSN 2049-2618. PMC 5748958. PMID 29291746. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5748958
Kumaresan, Deepak; Stephenson, Jason; Doxey, Andrew C.; Bandukwala, Hina; Brooks, Elliot; Hillebrand-Voiculescu, Alexandra; Whiteley, Andrew S.; Murrell, J Colin (2018-01-02). "Aerobic proteobacterial methylotrophs in Movile Cave: genomic and metagenomic analyses". Microbiome. 6 (1): 1. doi:10.1186/s40168-017-0383-2. ISSN 2049-2618. PMC 5748958. PMID 29291746. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5748958
Chiciudean, Iulia; Russo, Giancarlo; Bogdan, Diana Felicia; Levei, Erika Andrea; Faur, Luchiana; Hillebrand-Voiculescu, Alexandra; Moldovan, Oana Teodora; Banciu, Horia Leonard (2022-08-17). "Competition-cooperation in the chemoautotrophic ecosystem of Movile Cave: first metagenomic approach on sediments". Environmental Microbiome. 17 (1): 44. Bibcode:2022EMicb..17...44C. doi:10.1186/s40793-022-00438-w. ISSN 2524-6372. PMC 9386943. PMID 35978381. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9386943
Chiciudean, Iulia; Russo, Giancarlo; Bogdan, Diana Felicia; Levei, Erika Andrea; Faur, Luchiana; Hillebrand-Voiculescu, Alexandra; Moldovan, Oana Teodora; Banciu, Horia Leonard (2022-08-17). "Competition-cooperation in the chemoautotrophic ecosystem of Movile Cave: first metagenomic approach on sediments". Environmental Microbiome. 17 (1): 44. Bibcode:2022EMicb..17...44C. doi:10.1186/s40793-022-00438-w. ISSN 2524-6372. PMC 9386943. PMID 35978381. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9386943
Chiciudean, Iulia; Russo, Giancarlo; Bogdan, Diana Felicia; Levei, Erika Andrea; Faur, Luchiana; Hillebrand-Voiculescu, Alexandra; Moldovan, Oana Teodora; Banciu, Horia Leonard (2022-08-17). "Competition-cooperation in the chemoautotrophic ecosystem of Movile Cave: first metagenomic approach on sediments". Environmental Microbiome. 17 (1): 44. Bibcode:2022EMicb..17...44C. doi:10.1186/s40793-022-00438-w. ISSN 2524-6372. PMC 9386943. PMID 35978381. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9386943
Chiciudean, Iulia; Russo, Giancarlo; Bogdan, Diana Felicia; Levei, Erika Andrea; Faur, Luchiana; Hillebrand-Voiculescu, Alexandra; Moldovan, Oana Teodora; Banciu, Horia Leonard (2022-08-17). "Competition-cooperation in the chemoautotrophic ecosystem of Movile Cave: first metagenomic approach on sediments". Environmental Microbiome. 17 (1): 44. Bibcode:2022EMicb..17...44C. doi:10.1186/s40793-022-00438-w. ISSN 2524-6372. PMC 9386943. PMID 35978381. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9386943
Chiciudean, Iulia; Russo, Giancarlo; Bogdan, Diana Felicia; Levei, Erika Andrea; Faur, Luchiana; Hillebrand-Voiculescu, Alexandra; Moldovan, Oana Teodora; Banciu, Horia Leonard (2022-08-17). "Competition-cooperation in the chemoautotrophic ecosystem of Movile Cave: first metagenomic approach on sediments". Environmental Microbiome. 17 (1): 44. Bibcode:2022EMicb..17...44C. doi:10.1186/s40793-022-00438-w. ISSN 2524-6372. PMC 9386943. PMID 35978381. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9386943
Freches, André; Fradinho, Joana Costa (2024-06-18). Atomi, Haruyuki (ed.). "The biotechnological potential of the Chloroflexota phylum". Applied and Environmental Microbiology. 90 (6): e0175623. Bibcode:2024ApEnM..90E1756F. doi:10.1128/aem.01756-23. ISSN 0099-2240. PMC 11218635. PMID 38709098. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11218635
Chiciudean, Iulia; Russo, Giancarlo; Bogdan, Diana Felicia; Levei, Erika Andrea; Faur, Luchiana; Hillebrand-Voiculescu, Alexandra; Moldovan, Oana Teodora; Banciu, Horia Leonard (2022-08-17). "Competition-cooperation in the chemoautotrophic ecosystem of Movile Cave: first metagenomic approach on sediments". Environmental Microbiome. 17 (1): 44. Bibcode:2022EMicb..17...44C. doi:10.1186/s40793-022-00438-w. ISSN 2524-6372. PMC 9386943. PMID 35978381. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9386943
Reboul, Guillaume; Moreira, David; Bertolino, Paola; Hillebrand-Voiculescu, Alexandra Maria; López-García, Purificación (2019-04-10). "Microbial eukaryotes in the suboxic chemosynthetic ecosystem of Movile Cave, Romania". Environmental Microbiology Reports. 11 (3): 464–473. Bibcode:2019EnvMR..11..464R. doi:10.1111/1758-2229.12756. ISSN 1758-2229. PMC 6697535. PMID 30969022. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6697535
Reboul, Guillaume; Moreira, David; Bertolino, Paola; Hillebrand-Voiculescu, Alexandra Maria; López-García, Purificación (2019-04-10). "Microbial eukaryotes in the suboxic chemosynthetic ecosystem of Movile Cave, Romania". Environmental Microbiology Reports. 11 (3): 464–473. Bibcode:2019EnvMR..11..464R. doi:10.1111/1758-2229.12756. ISSN 1758-2229. PMC 6697535. PMID 30969022. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6697535
Fenchel, Tom; Finlay, Bland J (1995-03-16). Ecology and Evolution in Anoxic Worlds. Oxford University PressOxford. doi:10.1093/oso/9780198548386.001.0001. ISBN 978-0-19-854838-6. 978-0-19-854838-6
Reboul, Guillaume; Moreira, David; Bertolino, Paola; Hillebrand-Voiculescu, Alexandra Maria; López-García, Purificación (2019-04-10). "Microbial eukaryotes in the suboxic chemosynthetic ecosystem of Movile Cave, Romania". Environmental Microbiology Reports. 11 (3): 464–473. Bibcode:2019EnvMR..11..464R. doi:10.1111/1758-2229.12756. ISSN 1758-2229. PMC 6697535. PMID 30969022. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6697535
Reboul, Guillaume; Moreira, David; Bertolino, Paola; Hillebrand-Voiculescu, Alexandra Maria; López-García, Purificación (2019-04-10). "Microbial eukaryotes in the suboxic chemosynthetic ecosystem of Movile Cave, Romania". Environmental Microbiology Reports. 11 (3): 464–473. Bibcode:2019EnvMR..11..464R. doi:10.1111/1758-2229.12756. ISSN 1758-2229. PMC 6697535. PMID 30969022. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6697535
Reboul, Guillaume; Moreira, David; Bertolino, Paola; Hillebrand-Voiculescu, Alexandra Maria; López-García, Purificación (2019-04-10). "Microbial eukaryotes in the suboxic chemosynthetic ecosystem of Movile Cave, Romania". Environmental Microbiology Reports. 11 (3): 464–473. Bibcode:2019EnvMR..11..464R. doi:10.1111/1758-2229.12756. ISSN 1758-2229. PMC 6697535. PMID 30969022. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6697535
Reboul, Guillaume; Moreira, David; Bertolino, Paola; Hillebrand-Voiculescu, Alexandra Maria; López-García, Purificación (2019-04-10). "Microbial eukaryotes in the suboxic chemosynthetic ecosystem of Movile Cave, Romania". Environmental Microbiology Reports. 11 (3): 464–473. Bibcode:2019EnvMR..11..464R. doi:10.1111/1758-2229.12756. ISSN 1758-2229. PMC 6697535. PMID 30969022. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6697535
Reboul, Guillaume; Moreira, David; Bertolino, Paola; Hillebrand-Voiculescu, Alexandra Maria; López-García, Purificación (2019-04-10). "Microbial eukaryotes in the suboxic chemosynthetic ecosystem of Movile Cave, Romania". Environmental Microbiology Reports. 11 (3): 464–473. Bibcode:2019EnvMR..11..464R. doi:10.1111/1758-2229.12756. ISSN 1758-2229. PMC 6697535. PMID 30969022. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6697535
Reboul, Guillaume; Moreira, David; Bertolino, Paola; Hillebrand-Voiculescu, Alexandra Maria; López-García, Purificación (2019-04-10). "Microbial eukaryotes in the suboxic chemosynthetic ecosystem of Movile Cave, Romania". Environmental Microbiology Reports. 11 (3): 464–473. Bibcode:2019EnvMR..11..464R. doi:10.1111/1758-2229.12756. ISSN 1758-2229. PMC 6697535. PMID 30969022. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6697535
Reboul, Guillaume; Moreira, David; Bertolino, Paola; Hillebrand-Voiculescu, Alexandra Maria; López-García, Purificación (2019-04-10). "Microbial eukaryotes in the suboxic chemosynthetic ecosystem of Movile Cave, Romania". Environmental Microbiology Reports. 11 (3): 464–473. Bibcode:2019EnvMR..11..464R. doi:10.1111/1758-2229.12756. ISSN 1758-2229. PMC 6697535. PMID 30969022. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6697535
Embley, T. Martin; Martin, William (2006-03-30). "Eukaryotic evolution, changes and challenges". Nature. 440 (7084): 623–630. Bibcode:2006Natur.440..623E. doi:10.1038/nature04546. ISSN 1476-4687. PMID 16572163. https://www.nature.com/articles/nature04546
Reboul, Guillaume; Moreira, David; Bertolino, Paola; Hillebrand-Voiculescu, Alexandra Maria; López-García, Purificación (2019-04-10). "Microbial eukaryotes in the suboxic chemosynthetic ecosystem of Movile Cave, Romania". Environmental Microbiology Reports. 11 (3): 464–473. Bibcode:2019EnvMR..11..464R. doi:10.1111/1758-2229.12756. ISSN 1758-2229. PMC 6697535. PMID 30969022. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6697535
Reboul, Guillaume; Moreira, David; Bertolino, Paola; Hillebrand-Voiculescu, Alexandra Maria; López-García, Purificación (2019-04-10). "Microbial eukaryotes in the suboxic chemosynthetic ecosystem of Movile Cave, Romania". Environmental Microbiology Reports. 11 (3): 464–473. Bibcode:2019EnvMR..11..464R. doi:10.1111/1758-2229.12756. ISSN 1758-2229. PMC 6697535. PMID 30969022. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6697535
Reboul, Guillaume; Moreira, David; Bertolino, Paola; Hillebrand-Voiculescu, Alexandra Maria; López-García, Purificación (2019-04-10). "Microbial eukaryotes in the suboxic chemosynthetic ecosystem of Movile Cave, Romania". Environmental Microbiology Reports. 11 (3): 464–473. Bibcode:2019EnvMR..11..464R. doi:10.1111/1758-2229.12756. ISSN 1758-2229. PMC 6697535. PMID 30969022. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6697535
Reboul, Guillaume; Moreira, David; Bertolino, Paola; Hillebrand-Voiculescu, Alexandra Maria; López-García, Purificación (2019-04-10). "Microbial eukaryotes in the suboxic chemosynthetic ecosystem of Movile Cave, Romania". Environmental Microbiology Reports. 11 (3): 464–473. Bibcode:2019EnvMR..11..464R. doi:10.1111/1758-2229.12756. ISSN 1758-2229. PMC 6697535. PMID 30969022. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6697535
Reboul, Guillaume; Moreira, David; Bertolino, Paola; Hillebrand-Voiculescu, Alexandra Maria; López-García, Purificación (2019-04-10). "Microbial eukaryotes in the suboxic chemosynthetic ecosystem of Movile Cave, Romania". Environmental Microbiology Reports. 11 (3): 464–473. Bibcode:2019EnvMR..11..464R. doi:10.1111/1758-2229.12756. ISSN 1758-2229. PMC 6697535. PMID 30969022. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6697535
Reboul, Guillaume; Moreira, David; Bertolino, Paola; Hillebrand-Voiculescu, Alexandra Maria; López-García, Purificación (2019-04-10). "Microbial eukaryotes in the suboxic chemosynthetic ecosystem of Movile Cave, Romania". Environmental Microbiology Reports. 11 (3): 464–473. Bibcode:2019EnvMR..11..464R. doi:10.1111/1758-2229.12756. ISSN 1758-2229. PMC 6697535. PMID 30969022. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6697535
Reboul, Guillaume; Moreira, David; Bertolino, Paola; Hillebrand-Voiculescu, Alexandra Maria; López-García, Purificación (2019-04-10). "Microbial eukaryotes in the suboxic chemosynthetic ecosystem of Movile Cave, Romania". Environmental Microbiology Reports. 11 (3): 464–473. Bibcode:2019EnvMR..11..464R. doi:10.1111/1758-2229.12756. ISSN 1758-2229. PMC 6697535. PMID 30969022. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6697535
Nováková, Alena; Hubka, Vít; Valinová, Šárka; Kolařík, Miroslav; Hillebrand-Voiculescu, Alexandra Maria (2017-05-28). "Cultivable microscopic fungi from an underground chemosynthesis-based ecosystem: a preliminary study". Folia Microbiologica. 63 (1): 43–55. doi:10.1007/s12223-017-0527-6. ISSN 0015-5632. PMID 28551852. http://link.springer.com/10.1007/s12223-017-0527-6
Nováková, Alena; Hubka, Vít; Valinová, Šárka; Kolařík, Miroslav; Hillebrand-Voiculescu, Alexandra Maria (2017-05-28). "Cultivable microscopic fungi from an underground chemosynthesis-based ecosystem: a preliminary study". Folia Microbiologica. 63 (1): 43–55. doi:10.1007/s12223-017-0527-6. ISSN 0015-5632. PMID 28551852. http://link.springer.com/10.1007/s12223-017-0527-6
Nováková, Alena; Hubka, Vít; Valinová, Šárka; Kolařík, Miroslav; Hillebrand-Voiculescu, Alexandra Maria (2017-05-28). "Cultivable microscopic fungi from an underground chemosynthesis-based ecosystem: a preliminary study". Folia Microbiologica. 63 (1): 43–55. doi:10.1007/s12223-017-0527-6. ISSN 0015-5632. PMID 28551852. http://link.springer.com/10.1007/s12223-017-0527-6
Sarbu, Serban M.; Kane, Thomas C.; Kinkle, Brian K. (1996-06-28). "A Chemoautotrophically Based Cave Ecosystem". Science. 272 (5270): 1953–1955. Bibcode:1996Sci...272.1953S. doi:10.1126/science.272.5270.1953. ISSN 0036-8075. PMID 8662497. https://www.science.org/doi/10.1126/science.272.5270.1953
Sarbu, Serban M.; Kane, Thomas C.; Kinkle, Brian K. (1996-06-28). "A Chemoautotrophically Based Cave Ecosystem". Science. 272 (5270): 1953–1955. Bibcode:1996Sci...272.1953S. doi:10.1126/science.272.5270.1953. ISSN 0036-8075. PMID 8662497. https://www.science.org/doi/10.1126/science.272.5270.1953
Flot, Jean-François; Bauermeister, Jan; Brad, Traian; Hillebrand-Voiculescu, Alexandra; Sarbu, Serban M.; Dattagupta, Sharmishtha (2014). "iphargus–hiothrix associations may be widespread in sulphidic groundwater ecosystems: evidence from southeastern Romania". Molecular Ecology. 23 (6): 1405–1417. Bibcode:2014MolEc..23.1405F. doi:10.1111/mec.12461. ISSN 1365-294X. PMC 4282457. PMID 24044653. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4282457
Ravin, Nikolai V.; Rudenko, Tatyana S.; Smolyakov, Dmitry D.; Beletsky, Alexey V.; Gureeva, Maria V.; Samylina, Olga S.; Grabovich, Margarita Yu. (2022-08-23). "History of the Study of the Genus Thiothrix: From the First Enrichment Cultures to Pangenomic Analysis". International Journal of Molecular Sciences. 23 (17): 9531. doi:10.3390/ijms23179531. ISSN 1422-0067. PMC 9455678. PMID 36076928. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9455678
Brigmon, Robin L.; De Ridder, Chantal (1998-09-01). "Symbiotic Relationship of Thiothrix spp. with an Echinoderm". Applied and Environmental Microbiology. 64 (9): 3491–3495. Bibcode:1998ApEnM..64.3491B. doi:10.1128/AEM.64.9.3491-3495.1998. PMC 106752. PMID 9726902. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC106752
Flot, Jean-François; Bauermeister, Jan; Brad, Traian; Hillebrand-Voiculescu, Alexandra; Sarbu, Serban M.; Dattagupta, Sharmishtha (2014). "iphargus–hiothrix associations may be widespread in sulphidic groundwater ecosystems: evidence from southeastern Romania". Molecular Ecology. 23 (6): 1405–1417. Bibcode:2014MolEc..23.1405F. doi:10.1111/mec.12461. ISSN 1365-294X. PMC 4282457. PMID 24044653. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4282457
Flot, Jean-François; Bauermeister, Jan; Brad, Traian; Hillebrand-Voiculescu, Alexandra; Sarbu, Serban M.; Dattagupta, Sharmishtha (2014). "iphargus–hiothrix associations may be widespread in sulphidic groundwater ecosystems: evidence from southeastern Romania". Molecular Ecology. 23 (6): 1405–1417. Bibcode:2014MolEc..23.1405F. doi:10.1111/mec.12461. ISSN 1365-294X. PMC 4282457. PMID 24044653. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4282457
Hutchens, Elena; Radajewski, Stefan; Dumont, Marc G.; McDonald, Ian R.; Murrell, J. Colin (2004-12-04). "Analysis of methanotrophic bacteria in Movile Cave by stable isotope probing". Environmental Microbiology. 6 (2): 111–120. Bibcode:2004EnvMi...6..111H. doi:10.1046/j.1462-2920.2003.00543.x. ISSN 1462-2912. PMID 14756876. https://pubmed.ncbi.nlm.nih.gov/14756876