Not to be confused with the plane in hyperbolic geometry.
Let F be a field of characteristic not 2 and V = F2. If we consider the general element (x, y) of V, then the quadratic forms q = xy and r = x2 − y2 are equivalent since there is a linear transformation on V that makes q look like r, and vice versa. Evidently, (V, q) and (V, r) are isotropic. This example is called the hyperbolic plane in the theory of quadratic forms. A common instance has F = real numbers in which case {x ∈ V : q(x) = nonzero constant} and {x ∈ V : r(x) = nonzero constant} are hyperbolas. In particular, {x ∈ V : r(x) = 1} is the unit hyperbola. The notation ⟨1⟩ ⊕ ⟨−1⟩ has been used by Milnor and Husemoller2: 9 for the hyperbolic plane as the signs of the terms of the bivariate polynomial r are exhibited.
The affine hyperbolic plane was described by Emil Artin as a quadratic space with basis {M, N} satisfying M2 = N2 = 0, NM = 1, where the products represent the quadratic form.3
Through the polarization identity the quadratic form is related to a symmetric bilinear form B(u, v) = 1/4(q(u + v) − q(u − v)).
Two vectors u and v are orthogonal when B(u, v) = 0. In the case of the hyperbolic plane, such u and v are hyperbolic-orthogonal.
A space with quadratic form is split (or metabolic) if there is a subspace which is equal to its own orthogonal complement; equivalently, the index of isotropy is equal to half the dimension.4: 57 The hyperbolic plane is an example, and over a field of characteristic not equal to 2, every split space is a direct sum of hyperbolic planes.5: 12, 3
From the point of view of classification of quadratic forms, spaces with definite quadratic forms are the basic building blocks for quadratic spaces of arbitrary dimensions. For a general field F, classification of definite quadratic forms is a nontrivial problem. By contrast, the isotropic forms are usually much easier to handle. By Witt's decomposition theorem, every inner product space over a field is an orthogonal direct sum of a split space and a space with definite quadratic form.6: 56
Milnor, J.; Husemoller, D. (1973). Symmetric Bilinear Forms. Ergebnisse der Mathematik und ihrer Grenzgebiete. Vol. 73. Springer-Verlag. ISBN 3-540-06009-X. Zbl 0292.10016. 3-540-06009-X ↩
Emil Artin (1957) Geometric Algebra, page 119 via Internet Archive /wiki/Emil_Artin ↩