A linear Volterra equation of the first kind can always be reduced to a linear Volterra equation of the second kind, assuming that K ( t , t ) ≠ 0 {\displaystyle K(t,t)\neq 0} . Taking the derivative of the first kind Volterra equation gives us: d f d t = ∫ a t ∂ K ∂ t x ( s ) d s + K ( t , t ) x ( t ) {\displaystyle {df \over {dt}}=\int _{a}^{t}{\partial K \over {\partial t}}x(s)ds+K(t,t)x(t)} Dividing through by K ( t , t ) {\displaystyle K(t,t)} yields: x ( t ) = 1 K ( t , t ) d f d t − ∫ a t 1 K ( t , t ) ∂ K ∂ t x ( s ) d s {\displaystyle x(t)={1 \over {K(t,t)}}{df \over {dt}}-\int _{a}^{t}{1 \over {K(t,t)}}{\partial K \over {\partial t}}x(s)ds} Defining f ~ ( t ) = 1 K ( t , t ) d f d t {\textstyle {\widetilde {f}}(t)={1 \over {K(t,t)}}{df \over {dt}}} and K ~ ( t , s ) = − 1 K ( t , t ) ∂ K ∂ t {\textstyle {\widetilde {K}}(t,s)=-{1 \over {K(t,t)}}{\partial K \over {\partial t}}} completes the transformation of the first kind equation into a linear Volterra equation of the second kind.
A standard method for computing the numerical solution of a linear Volterra equation of the second kind is the trapezoidal rule, which for equally-spaced subintervals Δ x {\displaystyle \Delta x} is given by: ∫ a b f ( x ) d x ≈ Δ x 2 [ f ( x 0 ) + 2 ∑ i = 1 n − 1 f ( x i ) + f ( x n ) ] {\displaystyle \int _{a}^{b}f(x)dx\approx {\Delta x \over {2}}\left[f(x_{0})+2\sum _{i=1}^{n-1}f(x_{i})+f(x_{n})\right]} Assuming equal spacing for the subintervals, the integral component of the Volterra equation may be approximated by: ∫ a t K ( t , s ) x ( s ) d s ≈ Δ s 2 [ K ( t , s 0 ) x ( s 0 ) + 2 K ( t , s 1 ) x ( s 1 ) + ⋯ + 2 K ( t , s n − 1 ) x ( s n − 1 ) + K ( t , s n ) x ( s n ) ] {\displaystyle \int _{a}^{t}K(t,s)x(s)ds\approx {\Delta s \over {2}}\left[K(t,s_{0})x(s_{0})+2K(t,s_{1})x(s_{1})+\cdots +2K(t,s_{n-1})x(s_{n-1})+K(t,s_{n})x(s_{n})\right]} Defining x i = x ( s i ) {\displaystyle x_{i}=x(s_{i})} , f i = f ( t i ) {\displaystyle f_{i}=f(t_{i})} , and K i j = K ( t i , s j ) {\displaystyle K_{ij}=K(t_{i},s_{j})} , we have the system of linear equations: x 0 = f 0 x 1 = f 1 + Δ s 2 ( K 10 x 0 + K 11 x 1 ) x 2 = f 2 + Δ s 2 ( K 20 x 0 + 2 K 21 x 1 + K 22 x 2 ) ⋮ x n = f n + Δ s 2 ( K n 0 x 0 + 2 K n 1 x 1 + ⋯ + 2 K n , n − 1 x n − 1 + K n n x n ) {\displaystyle {\begin{aligned}x_{0}&=f_{0}\\x_{1}&=f_{1}+{\Delta s \over {2}}\left(K_{10}x_{0}+K_{11}x_{1}\right)\\x_{2}&=f_{2}+{\Delta s \over {2}}\left(K_{20}x_{0}+2K_{21}x_{1}+K_{22}x_{2}\right)\\&\vdots \\x_{n}&=f_{n}+{\Delta s \over {2}}\left(K_{n0}x_{0}+2K_{n1}x_{1}+\cdots +2K_{n,n-1}x_{n-1}+K_{nn}x_{n}\right)\end{aligned}}} This is equivalent to the matrix equation: x = f + M x ⟹ x = ( I − M ) − 1 f {\displaystyle x=f+Mx\implies x=(I-M)^{-1}f} For well-behaved kernels, the trapezoidal rule tends to work well.
One area where Volterra integral equations appear is in ruin theory, the study of the risk of insolvency in actuarial science. The objective is to quantify the probability of ruin ψ ( u ) = P [ τ ( u ) < ∞ ] {\displaystyle \psi (u)=\mathbb {P} [\tau (u)<\infty ]} , where u {\displaystyle u} is the initial surplus and τ ( u ) {\displaystyle \tau (u)} is the time of ruin. In the classical model of ruin theory, the net cash position X t {\displaystyle X_{t}} is a function of the initial surplus, premium income earned at rate c {\displaystyle c} , and outgoing claims ξ {\displaystyle \xi } : X t = u + c t − ∑ i = 1 N t ξ i , t ≥ 0 {\displaystyle X_{t}=u+ct-\sum _{i=1}^{N_{t}}\xi _{i},\quad t\geq 0} where N t {\displaystyle N_{t}} is a Poisson process for the number of claims with intensity λ {\displaystyle \lambda } . Under these circumstances, the ruin probability may be represented by a Volterra integral equation of the form6: ψ ( u ) = λ c ∫ u ∞ S ( x ) d x + λ c ∫ 0 u ψ ( u − x ) S ( x ) d x {\displaystyle \psi (u)={\lambda \over {c}}\int _{u}^{\infty }S(x)dx+{\lambda \over {c}}\int _{0}^{u}\psi (u-x)S(x)dx} where S ( ⋅ ) {\displaystyle S(\cdot )} is the survival function of the claims distribution.
Polyanin, Andrei D.; Manzhirov, Alexander V. (2008). Handbook of Integral Equations (2nd ed.). Boca Raton, FL: Chapman and Hall/CRC. ISBN 978-1584885078. 978-1584885078 ↩
Inaba, Hisashi (2017). "The Stable Population Model". Age-Structured Population Dynamics in Demography and Epidemiology. Singapore: Springer. pp. 1–74. doi:10.1007/978-981-10-0188-8_1. ISBN 978-981-10-0187-1. 978-981-10-0187-1 ↩
Brunner, Hermann (2017). Volterra Integral Equations: An Introduction to Theory and Applications. Cambridge Monographs on Applied and Computational Mathematics. Cambridge, UK: Cambridge University Press. ISBN 978-1107098725. 978-1107098725 ↩
Daddi-Moussa-Ider, A.; Vilfan, A.; Golestanian, R. (6 April 2022). "Diffusiophoretic propulsion of an isotropic active colloidal particle near a finite-sized disk embedded in a planar fluid–fluid interface". Journal of Fluid Mechanics. 940: A12. arXiv:2109.14437. doi:10.1017/jfm.2022.232. /wiki/Ramin_Golestanian ↩
Daddi-Moussa-Ider, A.; Lisicki, M.; Löwen, H.; Menzel, A. M. (5 February 2020). "Dynamics of a microswimmer–microplatelet composite". Physics of Fluids. 32 (2): 021902. arXiv:2001.06646. doi:10.1063/1.5142054. /wiki/Hartmut_L%C3%B6wen ↩
"Lecture Notes on Risk Theory" (PDF). School of Mathematics, Statistics and Actuarial Science. University of Kent. February 20, 2010. pp. 17–22. https://www.kent.ac.uk/smsas/personal/lb209/files/risk-notes-10.pdf ↩