A modulus m can be split into two parts, mf and m∞, the product over the finite and infinite places, respectively. Let Im to be one of the following:
Lang 1994, §VI.1 - Lang, Serge (1994), Algebraic number theory, Graduate Texts in Mathematics, vol. 110 (2 ed.), New York: Springer-Verlag, ISBN 978-0-387-94225-4, MR 1282723 https://mathscinet.ams.org/mathscinet-getitem?mr=1282723
Cohn 1985, definition 7.2.1 - Cohn, Harvey (1985), Introduction to the construction of class fields, Cambridge studies in advanced mathematics, vol. 6, Cambridge University Press, ISBN 978-0-521-24762-7
Janusz 1996, §IV.1 - Janusz, Gerald J. (1996), Algebraic number fields, Graduate Studies in Mathematics, vol. 7, American Mathematical Society, ISBN 978-0-8218-0429-2
Serre 1988, §III.1 - Serre, Jean-Pierre (1988), Algebraic groups and class fields, Graduate Texts in Mathematics, vol. 117, New York: Springer-Verlag, ISBN 978-0-387-96648-9 https://archive.org/details/algebraicgroupsc0000serr
Serre 1988, §III.1 - Serre, Jean-Pierre (1988), Algebraic groups and class fields, Graduate Texts in Mathematics, vol. 117, New York: Springer-Verlag, ISBN 978-0-387-96648-9 https://archive.org/details/algebraicgroupsc0000serr
Neukirch 1999, §III.1 - Neukirch, Jürgen (1999). Algebraische Zahlentheorie. Grundlehren der mathematischen Wissenschaften. Vol. 322. Berlin: Springer-Verlag. ISBN 978-3-540-65399-8. MR 1697859. Zbl 0956.11021. https://mathscinet.ams.org/mathscinet-getitem?mr=1697859
Janusz 1996, §IV.1 - Janusz, Gerald J. (1996), Algebraic number fields, Graduate Studies in Mathematics, vol. 7, American Mathematical Society, ISBN 978-0-8218-0429-2
Serre 1988, §III.1 - Serre, Jean-Pierre (1988), Algebraic groups and class fields, Graduate Texts in Mathematics, vol. 117, New York: Springer-Verlag, ISBN 978-0-387-96648-9 https://archive.org/details/algebraicgroupsc0000serr
Milne 2008, §V.1 - Milne, James (2008), Class field theory (v4.0 ed.), retrieved 2010-02-22 http://jmilne.org/math/CourseNotes/cft.html
Janusz 1996, §IV.1 - Janusz, Gerald J. (1996), Algebraic number fields, Graduate Studies in Mathematics, vol. 7, American Mathematical Society, ISBN 978-0-8218-0429-2
Serre 1988, §VI.6 - Serre, Jean-Pierre (1988), Algebraic groups and class fields, Graduate Texts in Mathematics, vol. 117, New York: Springer-Verlag, ISBN 978-0-387-96648-9 https://archive.org/details/algebraicgroupsc0000serr
Janusz 1996, §IV.1 - Janusz, Gerald J. (1996), Algebraic number fields, Graduate Studies in Mathematics, vol. 7, American Mathematical Society, ISBN 978-0-8218-0429-2
Serre 1988, §V.1 - Serre, Jean-Pierre (1988), Algebraic groups and class fields, Graduate Texts in Mathematics, vol. 117, New York: Springer-Verlag, ISBN 978-0-387-96648-9 https://archive.org/details/algebraicgroupsc0000serr
Janusz 1996, §IV.1 - Janusz, Gerald J. (1996), Algebraic number fields, Graduate Studies in Mathematics, vol. 7, American Mathematical Society, ISBN 978-0-8218-0429-2
Serre 1988, §VI.6 - Serre, Jean-Pierre (1988), Algebraic groups and class fields, Graduate Texts in Mathematics, vol. 117, New York: Springer-Verlag, ISBN 978-0-387-96648-9 https://archive.org/details/algebraicgroupsc0000serr
Neukirch 1999, §VII.6 - Neukirch, Jürgen (1999). Algebraische Zahlentheorie. Grundlehren der mathematischen Wissenschaften. Vol. 322. Berlin: Springer-Verlag. ISBN 978-3-540-65399-8. MR 1697859. Zbl 0956.11021. https://mathscinet.ams.org/mathscinet-getitem?mr=1697859
Janusz 1996, §4.1 - Janusz, Gerald J. (1996), Algebraic number fields, Graduate Studies in Mathematics, vol. 7, American Mathematical Society, ISBN 978-0-8218-0429-2