Several small molecule inducers that can activate the glyoxalase pathway by either by promoting GLO1 activity to increase conversion of MG into D-Lactate (GLO1 activators), or by directly reducing MG levels or levels of MG substrate (MG scavengers). GLO1 activators include the synthetic drug candesartan or natural compounds resveratrol, fisetin, the binary combination of trans-resveratrol and hesperetin (tRES-HESP), mangiferin, allyl isothiocyanate, phenethyl isothiocyanate, sulforaphane, and bardoxolone methyl, and MG scavengers including aminoguanidine, alagebrium, and benfotiamine. There is also the small molecule pyridoxamine, which acts as both a GLO1 activator and MG scavenger.
Many inhibitors of GLO1 have been discovered since GLO1 activity tends to be promoted in cancer cells, thus GLO1 serves as a potential therapeutic target for anti-cancer drug treatment and has been the focus of many research studies regarding its regulation in tumor cells.
Enhancing the glyoxalase system has been shown to delay accumulation of AGEs and associated retinal damage in animals that consume higher glycemic index diets. This was corroborated upon over-expression of GLO1, which in C. elegans reduced basal MG concentration, prevented mitochondrial protein modification and enhanced lifespan. Similarly, in mice, GLO1 over-expression reduced baseline MG concentrations in the brain. In diabetic mice, it prevented diabetes-induced increases in MG modification of glomerular proteins, reduced oxidative stress, and prevented development if diabetic kidney pathology, despite unchanged levels of hyperglycemia. Western diets, typically high in glycemic index, exacerbate AGE accumulation and amplify aging-related damage. Enhancing the glyoxalase system may offer a promising therapeutic strategy to prevent the onset and progression of AGEs-related diseases.
Retinal pigmented epithelial cells (RPE) and retina have among the highest glyoxalase activities in the body, however, glyoxalase activity is depressed upon aging. This is consistent with observed increases in AGEs associated with aging. Enhancing the glyoxalase system has been shown to delay accumulation of AGEs and associated retinal damage in animals that consume higher glycemic index diets.
Although the glyoxalase pathway is the main metabolic system that reduces methylglyoxal levels in the cell, other enzymes have also been found to convert methylglyoxal into non-AGE producing species. Specifically, 99% of MG is processed by glyoxalase metabolism, while less than 1% is metabolized into hydroxyacetone by aldo-keto reductases (AKRs) or into pyruvate by aldehyde dehydrogenases (ALDH). Other reactions have been found to produce MG that also feeds into the glyoxalase pathway. These reactions include catabolism of threonine and acetone, peroxidation of lipids, autoxidation of glucose, and degradation of glycated proteins.
Vander Jagt DL (1989). "15. The glyoxalase system". In Dolphin D, Poulson R, Avramovic O (eds.). Glutathione: Chemical, Biochemical and Medical Aspects. Part A. Coenzymes and cofactors. Wiley. pp. 597–641. ISBN 9780471097846. OCLC 18222786. 9780471097846
Farrera, Dominique; Galligan, James (September 2022). "The Human Glyoxalase Gene Family in Health and Disease". Chemical Research in Toxicology. 35 (10): 1766–1776. doi:10.1021/acs.chemrestox.2c00182. PMC 10013676. PMID 36048613. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013676
Farrera, Dominique; Galligan, James (September 2022). "The Human Glyoxalase Gene Family in Health and Disease". Chemical Research in Toxicology. 35 (10): 1766–1776. doi:10.1021/acs.chemrestox.2c00182. PMC 10013676. PMID 36048613. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013676
Dixon DP, Cummins L, Cole DJ, Edwards R (June 1998). "Glutathione-mediated detoxification systems in plants". Current Opinion in Plant Biology. 1 (3): 258–66. Bibcode:1998COPB....1..258D. doi:10.1016/S1369-5266(98)80114-3. PMID 10066594. /wiki/Bibcode_(identifier)
Inoue Y, Kimura A (1995). "Methylglyoxal and regulation of its metabolism in microorganisms". Advances in Microbial Physiology. 37: 177–227. doi:10.1016/S0065-2911(08)60146-0. ISBN 9780120277377. PMID 8540421. 9780120277377
Thornalley PJ (December 2003). "Glyoxalase I--structure, function and a critical role in the enzymatic defence against glycation". Biochemical Society Transactions. 31 (Pt 6): 1343–8. doi:10.1042/BST0311343. PMID 14641060. /wiki/Doi_(identifier)
Creighton DJ, Hamilton DS (March 2001). "Brief history of glyoxalase I and what we have learned about metal ion-dependent, enzyme-catalyzed isomerizations". Archives of Biochemistry and Biophysics. 387 (1): 1–10. doi:10.1006/abbi.2000.2253. PMID 11368170. /wiki/Doi_(identifier)
Vander Jagt DL (May 1993). "Glyoxalase II: molecular characteristics, kinetics and mechanism". Biochemical Society Transactions. 21 (2): 522–7. doi:10.1042/bst0210522. PMID 8359524. /wiki/Doi_(identifier)
Dixon DP, Cummins L, Cole DJ, Edwards R (June 1998). "Glutathione-mediated detoxification systems in plants". Current Opinion in Plant Biology. 1 (3): 258–66. Bibcode:1998COPB....1..258D. doi:10.1016/S1369-5266(98)80114-3. PMID 10066594. /wiki/Bibcode_(identifier)
Farrera, Dominique; Galligan, James (September 2022). "The Human Glyoxalase Gene Family in Health and Disease". Chemical Research in Toxicology. 35 (10): 1766–1776. doi:10.1021/acs.chemrestox.2c00182. PMC 10013676. PMID 36048613. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013676
He Y, Zhou C, Huang M, Tang C, Liu X, Yue Y, et al. (November 2020). "Glyoxalase system: A systematic review of its biological activity, related-diseases, screening methods and small molecule regulators". Biomedicine & Pharmacotherapy. 131: 110663. doi:10.1016/j.biopha.2020.110663. PMID 32858501. https://doi.org/10.1016%2Fj.biopha.2020.110663
Farrera, Dominique; Galligan, James (September 2022). "The Human Glyoxalase Gene Family in Health and Disease". Chemical Research in Toxicology. 35 (10): 1766–1776. doi:10.1021/acs.chemrestox.2c00182. PMC 10013676. PMID 36048613. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013676
Aragonès, Gemma; Rowan, Sheldon; Francisco, Sarah G.; Whitcomb, Elizabeth A.; Yang, Wenxin; Perini-Villanueva, Giuliana; Schalkwijk, Casper G.; Taylor, Allen; Bejarano, Eloy (2021-07-22). "The Glyoxalase System in Age-Related Diseases: Nutritional Intervention as Anti-Ageing Strategy". Cells. 10 (8): 1852. doi:10.3390/cells10081852. ISSN 2073-4409. PMC 8393707. PMID 34440621. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8393707
He Y, Zhou C, Huang M, Tang C, Liu X, Yue Y, et al. (November 2020). "Glyoxalase system: A systematic review of its biological activity, related-diseases, screening methods and small molecule regulators". Biomedicine & Pharmacotherapy. 131: 110663. doi:10.1016/j.biopha.2020.110663. PMID 32858501. https://doi.org/10.1016%2Fj.biopha.2020.110663
He Y, Zhou C, Huang M, Tang C, Liu X, Yue Y, et al. (November 2020). "Glyoxalase system: A systematic review of its biological activity, related-diseases, screening methods and small molecule regulators". Biomedicine & Pharmacotherapy. 131: 110663. doi:10.1016/j.biopha.2020.110663. PMID 32858501. https://doi.org/10.1016%2Fj.biopha.2020.110663
He Y, Zhou C, Huang M, Tang C, Liu X, Yue Y, et al. (November 2020). "Glyoxalase system: A systematic review of its biological activity, related-diseases, screening methods and small molecule regulators". Biomedicine & Pharmacotherapy. 131: 110663. doi:10.1016/j.biopha.2020.110663. PMID 32858501. https://doi.org/10.1016%2Fj.biopha.2020.110663
Bejarano, Eloy; Domenech-Bendaña, Alicia; Avila-Portillo, Norma; Rowan, Sheldon; Edirisinghe, Sachini; Taylor, Allen (July 2024). "Glycative stress as a cause of macular degeneration". Progress in Retinal and Eye Research. 101: 101260. doi:10.1016/j.preteyeres.2024.101260. ISSN 1873-1635. PMC 11699537. PMID 38521386. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699537
Aragonès G, Rowan S, G Francisco S, Yang W, Weinberg J, Taylor A, Bejarano E (October 2020). "Glyoxalase System as a Therapeutic Target against Diabetic Retinopathy". Antioxidants. 9 (11): 1062. doi:10.3390/antiox9111062. PMC 7692619. PMID 33143048. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7692619
Aragonès G, Rowan S, G Francisco S, Yang W, Weinberg J, Taylor A, Bejarano E (October 2020). "Glyoxalase System as a Therapeutic Target against Diabetic Retinopathy". Antioxidants. 9 (11): 1062. doi:10.3390/antiox9111062. PMC 7692619. PMID 33143048. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7692619
Aragonès G, Rowan S, G Francisco S, Yang W, Weinberg J, Taylor A, Bejarano E (October 2020). "Glyoxalase System as a Therapeutic Target against Diabetic Retinopathy". Antioxidants. 9 (11): 1062. doi:10.3390/antiox9111062. PMC 7692619. PMID 33143048. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7692619
Bejarano, Eloy; Domenech-Bendaña, Alicia; Avila-Portillo, Norma; Rowan, Sheldon; Edirisinghe, Sachini; Taylor, Allen (July 2024). "Glycative stress as a cause of macular degeneration". Progress in Retinal and Eye Research. 101: 101260. doi:10.1016/j.preteyeres.2024.101260. ISSN 1873-1635. PMC 11699537. PMID 38521386. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699537
Francisco, Sarah G.; Smith, Kelsey M.; Aragonès, Gemma; Whitcomb, Elizabeth A.; Weinberg, Jasper; Wang, Xuedi; Bejarano, Eloy; Taylor, Allen; Rowan, Sheldon (2020-09-18). "Dietary Patterns, Carbohydrates, and Age-Related Eye Diseases". Nutrients. 12 (9): 2862. doi:10.3390/nu12092862. ISSN 2072-6643. PMC 7551870. PMID 32962100.{{cite journal}}: CS1 maint: unflagged free DOI (link) https://pubmed.ncbi.nlm.nih.gov/32962100
Frandsen JR, Narayanasamy P (April 2018). "Neuroprotection through flavonoid: Enhancement of the glyoxalase pathway". Redox Biology. 14: 465–473. doi:10.1016/j.redox.2017.10.015. PMC 5680520. PMID 29080525. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5680520
Aragonès G, Rowan S, G Francisco S, Yang W, Weinberg J, Taylor A, Bejarano E (October 2020). "Glyoxalase System as a Therapeutic Target against Diabetic Retinopathy". Antioxidants. 9 (11): 1062. doi:10.3390/antiox9111062. PMC 7692619. PMID 33143048. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7692619
Bejarano, Eloy; Domenech-Bendaña, Alicia; Avila-Portillo, Norma; Rowan, Sheldon; Edirisinghe, Sachini; Taylor, Allen (July 2024). "Glycative stress as a cause of macular degeneration". Progress in Retinal and Eye Research. 101: 101260. doi:10.1016/j.preteyeres.2024.101260. ISSN 1873-1635. PMC 11699537. PMID 38521386. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699537
He Y, Zhou C, Huang M, Tang C, Liu X, Yue Y, et al. (November 2020). "Glyoxalase system: A systematic review of its biological activity, related-diseases, screening methods and small molecule regulators". Biomedicine & Pharmacotherapy. 131: 110663. doi:10.1016/j.biopha.2020.110663. PMID 32858501. https://doi.org/10.1016%2Fj.biopha.2020.110663
He Y, Zhou C, Huang M, Tang C, Liu X, Yue Y, et al. (November 2020). "Glyoxalase system: A systematic review of its biological activity, related-diseases, screening methods and small molecule regulators". Biomedicine & Pharmacotherapy. 131: 110663. doi:10.1016/j.biopha.2020.110663. PMID 32858501. https://doi.org/10.1016%2Fj.biopha.2020.110663