If A is a K-algebra, for K a ring, and D: A → A is a K-derivation, then
Given a graded algebra A and a homogeneous linear map D of grade |D| on A, D is a homogeneous derivation if
for every homogeneous element a and every element b of A for a commutator factor ε = ±1. A graded derivation is sum of homogeneous derivations with the same ε.
If ε = 1, this definition reduces to the usual case. If ε = −1, however, then
for odd |D|, and D is called an anti-derivation.
Examples of anti-derivations include the exterior derivative and the interior product acting on differential forms.
Graded derivations of superalgebras (i.e. Z2-graded algebras) are often called superderivations.
Hasse–Schmidt derivations are K-algebra homomorphisms
Composing further with the map that sends a formal power series ∑ a n t n {\displaystyle \sum a_{n}t^{n}} to the coefficient a 1 {\displaystyle a_{1}} gives a derivation.