Although senescent cells can no longer replicate, they remain metabolically active and commonly adopt an immunogenic phenotype consisting of a pro-inflammatory secretome, the up-regulation of immune ligands, a pro-survival response, promiscuous gene expression (pGE), and stain positive for senescence-associated β-galactosidase activity. Two proteins, senescence-associated beta-galactosidase and p16Ink4A, are regarded as biomarkers of cellular senescence. However, this results in a false positive for cells that naturally have these two proteins such as maturing tissue macrophages with senescence-associated beta-galactosidase and T-cells with p16Ink4A.
As the cell increases in size without sufficient proliferation, cellular homeostasis becomes more and more difficult to achieve; the cell experiences cytoplasmic dilution and succumbs to a permanent cell cycle arrest. More particularly, the osmotic stress caused by this overgrowth is linked to an accumulation of p21 during G0/G1 arrest, consequently preventing re-entry into S phase. Additionally, the persistent growth of the cell during this arrest, as driven by mTOR signaling, causes phenotypes characteristic of senescent cells such as cellular hypertrophy, SASP and lysosomal hyperfunctions. The enlarged cells that are able to re-enter the cell cycle are prone to DNA damage and experience abnormalities in signaling for repair (NHEJ pathway), eventually leading to a replication failure and a permanent cell-cycle exit.
Overall, a consistent correlation between larger cell size and senescence has been established. Understanding this mechanistic relationship is useful for addressing different treatment sensitivities in clinical contexts. For tumors presenting growth signal mutations, cell cycle inhibitors (CDK4/6 and CDK7 inhibitors) hold potential to be a more useful therapeutic, given this cell-size dependency of cellular senescence.
BRAFV600E and Ras are two oncogenes implicated in cellular senescence. BRAFV600E induces senescence through synthesis and secretion of IGFBP7. Ras activates the MAPK cascade which results in increased p53 activation and p16INK4a upregulation. The transition to a state of senescence due to oncogene mutations are irreversible and have been termed oncogene-induced senescence (OIS).
Interestingly, even after oncogenic activation of a tissue, several researchers have identified a senescent phenotype. Researchers have[when?] identified a senescent phenotype in benign lesions of the skin carrying oncogenic mutations in neurofibroma patients with a defect that specifically causes an increase in Ras. This finding has been highly reproducible in benign prostate lesions, in melanocytic lesions of UV-irradiated HGF/SF-transgenic mice, in lymphocytes and in the mammary gland from N-Ras transgenic mice, and in hyperplasias of the pituitary gland of mice with deregulated E2F activity. The key to these findings is that genetic manipulations that abrogated the senescence response led to full-blown malignancy in those carcinomas. As such, the evidence suggests senescent cells can be associated with pre-malignant stages of the tumor. Further, it has been speculated that a senescent phenotype might serve as a promising marker for staging. There are two types of senescence in vitro. The irreversible senescence which is mediated by INK4a/Rb and p53 pathways and the reversible senescent phenotype which is mediated by p53. This suggests that p53 pathway could be effectively harnessed as a therapeutic intervention to trigger senescence and ultimately mitigate tumorigenesis.
p53 has been shown to have promising therapeutic relevance in an oncological context. In the 2007 Nature paper by Xue et al., RNAi was used to regulate endogenous p53 in a liver carcinoma model. Xue et al. utilized a chimaeric liver cancer mouse model and transduced this model with the ras oncogene. They took embryonic progenitor cells, transduced those cells with oncogenic ras, along with the tetracycline transactivator (tta) protein to control p53 expression using doxycycline, a tetracycline analog and tetracycline responsive short hairpin RNA (shRNA). In the absence of Dox, p53 was actively suppressed as the microRNA levels increased, so as Dox was administered, p53 microRNA was turned off to facilitate the expression of p53. The liver cancers that expressed Ras showed signs of senescence following p53 reactivation including an increase in senescence associated B-galactosidase protein. Even if the expression of p53 was transiently activated or deactivated, senescence via SA B-gal was observed. Xue et al. show that by briefly reactivating p53 in tumors without functional p53 activity, tumor regression is observed. The induction of cellular senescence was associated with an increase in inflammatory cytokines as is expected based on the SASP. The presence of both senescence and an increase in immune activity is able to regress and limit liver carcinoma growth in this mouse model.
There are several reported signaling pathways that lead to cellular senescence including the p53 and p16Ink4a pathways. Both of these pathways are activated in response to cellular stressors and lead to cell cycle inhibition. p53 activates p21 which deactivates cyclin-dependent kinase 2(Cdk 2). Without Cdk 2, retinoblastoma protein (pRB) remains in its active, hypophosphorylated form and binds to the transcription factor E2F1, an important cell cycle regulator. This represses the transcriptional targets of E2F1, leading to cell cycle arrest after the G1 phase.
Senescent cells are highly heterogenous, which has caused most authorities in the field to believe that a universal marker of senescent cells will not be found, and that a multi-marker approach is required for the detection of senescent cells. For this reason, the Cellular Senescence Program Network was created to identify and characterize senescent cells in different body tissues.
Senescent cells affect tumor suppression, wound healing and possibly embryonic/placental development, and play a pathological role in age-related diseases. There are two primary tumor suppressor pathways known to mediate senescence: p14arf/p53 and INK4A/RB. More specifically p16INK4a-pRb tumor suppressor and p53 are known effectors of senescence. Most cancer cells have a mutated p53 and p16INK4a-pRb, which allows the cancer cells to escape a senescent fate. The p16 protein is a cyclin dependent kinase (CDK) inhibitor and it activates Rb tumor suppressor. p16 binds to CDK 4/6 to inhibit the kinase activity and inhibit Rb tumor suppressor via phosphorylation. The Rb tumor suppressor has been shown to associate with E2F1 (a protein necessary for transcription) in its monophosphorylated form, which inhibits transcription of downstream target genes involved in the G1/S transition. As part of a feedback loop, increased phosphorylation of Rb increases p16 expression that inhibits Cdk4/6. Reduced Cdk4/6 kinase activity results in higher levels of the hypo-phosphorylated (monophosphorylated) form of Rb, which subsequently leads to reduced levels of p16 expression.
The removal of aggregated p16 INK 4A positive senescent cells can delay tissue dysfunction and ultimately extend life. In the 2011 Nature paper by Baker et al. a novel transgene, INK-ATTAC, was used to inducibly eliminate p16 INK4A-positive senescent cells by action of a small molecule-induced activation of caspase 8, resulting in apoptosis. A BubR1 H/H mouse model known to experience the clinicopathological characteristics of aging-infertility, abnormal curvature to the spine, sarcopenia, cataracts, fat loss, dermal thinning, arrhythmias, etc. was used to test the consequences of p16INK4a removal. In these mice p16 INK4a aggregates in aging tissues including the skeletal and eye muscle, and adipose tissues. Baker et al. found that if the senescent cells are removed, it is possible to delay age-associated disorders. Not only does p16 play an important role in aging, but also in auto-immune diseases like rheumatoid arthritis that progressively lead to mobility impairment in advanced disease.
In the nervous system, senescence has been described in astrocytes and microglia, but is less understood in neurons. Because senescence arrests cell division, studies of senescence in the brain were focused mainly on glial cells and less studies were focused on nondividing neurons. Analyzing single nucleus RNA-Seq data from human brains suggested p19 as a marker for senescent neurons, which are strongly associated with neurons containing neurofibrillary tangle.
Due to the heterogeneous nature of senescent cells, different immune system cells eliminate different senescent cells. Specific components of the senescence-associated secretory phenotype (SASP) factors secreted by senescent cells attract and activate different components of both the innate and adaptive immune system.
It is important to recognize that cellular senescence is not inherently a negative phenomenon. During mammalian embryogenesis, programmed cellular senescence plays a role in tissue remodeling via macrophage infiltration and subsequent clearance of senescent cells. A study on the mesonephros and endolymphatic sac in mice highlighted the importance of cellular senescence for eventual morphogenesis of the embryonic kidney and the inner ear, respectively.
The negative implications of cellular senescence present themselves in the transition from acute to chronic senescence. When the immune system cannot clear senescent cells at the rate at which senescent cells are being produced, possibly as a result of the decline in immune function with age, accumulation of these cells leads to a disruption in tissue homeostasis.
Transplantation of only a few (1 per 10,000) senescent cells into lean middle-aged mice was shown to be sufficient to induce frailty, early onset of aging-associated diseases, and premature death.
Targeting senescent cells is a promising strategy to overcome age-related disease, simultaneous alleviate multiple comorbidities, and mitigate the effects of frailty. Removing the senescent cells by inducing apoptosis is the most straightforward option, and there are several agents that have been shown to accomplish this. Some of these senolytic drugs take advantage of the senescent-cell anti-apoptotic pathways (SCAPs); knocking out expression of the proteins involved in these pathways can lead to the death of senescent cells, leaving healthy cells.
Øvrebø, Jan Inge; Ma, Yiqin; Edgar, Bruce A. (2022). "Cell growth and the cell cycle: New insights about persistent questions". BioEssays. 44 (11): 2200150. doi:10.1002/bies.202200150. ISSN 1521-1878. PMC 10193172. PMID 36222263. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10193172
Beausejour, C. M. (2003-08-15). "Reversal of human cellular senescence: roles of the p53 and p16 pathways". The EMBO Journal. 22 (16): 4212–4222. doi:10.1093/emboj/cdg417. ISSN 1460-2075. PMC 175806. PMID 12912919. http://emboj.embopress.org/cgi/doi/10.1093/emboj/cdg417
Kuehnemann, Chisaka; Hughes, Jun-Wei B.; Desprez, Pierre-Yves; Melov, Simon; Wiley, Christopher D.; Campisi, Judith (2022-12-20). "Antiretroviral protease inhibitors induce features of cellular senescence that are reversible upon drug removal". Aging Cell. 22 (1): e13750. doi:10.1111/acel.13750. ISSN 1474-9718. PMC 9835573. PMID 36539941. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9835573
Collado M, Blasco MA, Serrano M (July 2007). "Cellular senescence in cancer and aging". Cell. 130 (2): 223–233. doi:10.1016/j.cell.2007.07.003. PMID 17662938. S2CID 18689141. https://doi.org/10.1016%2Fj.cell.2007.07.003
Hayat M (2014). Tumor dormancy, quiescence, and senescence, Volume 2: Aging, cancer, and noncancer pathologies. Springer. p. 188.
Tollefsbol T (2010). Epigenetics of Aging. Springer. p. 227. ISBN 978-1-4419-0638-0. 978-1-4419-0638-0
Shay JW, Wright WE (October 2000). "Hayflick, his limit, and cellular ageing". Nature Reviews. Molecular Cell Biology. 1 (1): 72–76. doi:10.1038/35036093. PMID 11413492. S2CID 6821048. /wiki/Doi_(identifier)
Kuilman T, Michaloglou C, Mooi WJ, Peeper DS (November 2010). "The essence of senescence". Genes & Development. 24 (22): 2463–2479. doi:10.1101/gad.1971610. PMC 2975923. PMID 21078816. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2975923
van Deursen JM (May 2014). "The role of senescent cells in ageing". Nature. 509 (7501): 439–446. Bibcode:2014Natur.509..439V. doi:10.1038/nature13193. PMC 4214092. PMID 24848057. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4214092
Wyld L, Bellantuono I, Tchkonia T, Morgan J, Turner O, Foss F, et al. (July 2020). "Senescence and Cancer: A Review of Clinical Implications of Senescence and Senotherapies". Cancers. 12 (8): e2134. doi:10.3390/cancers12082134. PMC 7464619. PMID 32752135. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7464619
Rivera-Torres J, San José E (2019). "Src Tyrosine Kinase Inhibitors: New Perspectives on Their Immune, Antiviral, and Senotherapeutic Potential". Frontiers in Pharmacology. 10: 1011. doi:10.3389/fphar.2019.01011. PMC 6759511. PMID 31619990. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6759511
Shafqat, Areez; Khan, Saifullah; Omer, Mohamed H.; Niaz, Mahnoor; Albalkhi, Ibrahem; AlKattan, Khaled; Yaqinuddin, Ahmed; Tchkonia, Tamara; Kirkland, James L.; Hashmi, Shahrukh K. (2023). "Cellular senescence in brain aging and cognitive decline". Frontiers in Aging Neuroscience. 15. doi:10.3389/fnagi.2023.1281581. ISSN 1663-4365. PMC 10702235. PMID 38076538. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10702235
Childs BG, Durik M, Baker DJ, van Deursen JM (December 2015). "Cellular senescence in aging and age-related disease: from mechanisms to therapy". Nature Medicine. 21 (12): 1424–1435. doi:10.1038/nm.4000. PMC 4748967. PMID 26646499. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4748967
Kuilman T, Michaloglou C, Mooi WJ, Peeper DS (November 2010). "The essence of senescence". Genes & Development. 24 (22): 2463–2479. doi:10.1101/gad.1971610. PMC 2975923. PMID 21078816. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2975923
Galbiati A, Beauséjour C, d'Adda di Fagagna F (April 2017). "A novel single-cell method provides direct evidence of persistent DNA damage in senescent cells and aged mammalian tissues". Aging Cell. 16 (2): 422–427. doi:10.1111/acel.12573. PMC 5334542. PMID 28124509. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5334542
White RR, Vijg J (September 2016). "Do DNA Double-Strand Breaks Drive Aging?". Molecular Cell. 63 (5): 729–738. doi:10.1016/j.molcel.2016.08.004. PMC 5012315. PMID 27588601. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5012315
Song P, Zhao Q, Zou MH (July 2020). "Targeting senescent cells to attenuate cardiovascular disease progression". Ageing Research Reviews. 60: 101072. doi:10.1016/j.arr.2020.101072. PMC 7263313. PMID 32298812. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7263313
Campisi J (2013). "Aging, cellular senescence, and cancer". Annual Review of Physiology. 75: 685–705. doi:10.1146/annurev-physiol-030212-183653. PMC 4166529. PMID 23140366. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4166529
Childs BG, Durik M, Baker DJ, van Deursen JM (December 2015). "Cellular senescence in aging and age-related disease: from mechanisms to therapy". Nature Medicine. 21 (12): 1424–1435. doi:10.1038/nm.4000. PMC 4748967. PMID 26646499. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4748967
Burton DG, Faragher RG (2015). "Cellular senescence: from growth arrest to immunogenic conversion". Age. 37 (2): 27. doi:10.1007/s11357-015-9764-2. PMC 4365077. PMID 25787341. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4365077
Campisi J (2013). "Aging, cellular senescence, and cancer". Annual Review of Physiology. 75: 685–705. doi:10.1146/annurev-physiol-030212-183653. PMC 4166529. PMID 23140366. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4166529
Rodier F, Campisi J (February 2011). "Four faces of cellular senescence". The Journal of Cell Biology. 192 (4): 547–556. doi:10.1083/jcb.201009094. PMC 3044123. PMID 21321098. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3044123
Burton DG, Krizhanovsky V (November 2014). "Physiological and pathological consequences of cellular senescence". Cellular and Molecular Life Sciences. 71 (22): 4373–4386. doi:10.1007/s00018-014-1691-3. PMC 4207941. PMID 25080110. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4207941
Øvrebø, Jan Inge; Ma, Yiqin; Edgar, Bruce A. (2022). "Cell growth and the cell cycle: New insights about persistent questions". BioEssays. 44 (11): 2200150. doi:10.1002/bies.202200150. ISSN 1521-1878. PMC 10193172. PMID 36222263. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10193172
Hayat M (2014). Tumor dormancy, quiescence, and senescence, Volume 2: Aging, cancer, and noncancer pathologies. Springer. p. 188.
Øvrebø, Jan Inge; Ma, Yiqin; Edgar, Bruce A. (2022). "Cell growth and the cell cycle: New insights about persistent questions". BioEssays. 44 (11): 2200150. doi:10.1002/bies.202200150. ISSN 1521-1878. PMC 10193172. PMID 36222263. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10193172
Shafqat, Areez; Khan, Saifullah; Omer, Mohamed H.; Niaz, Mahnoor; Albalkhi, Ibrahem; AlKattan, Khaled; Yaqinuddin, Ahmed; Tchkonia, Tamara; Kirkland, James L.; Hashmi, Shahrukh K. (2023). "Cellular senescence in brain aging and cognitive decline". Frontiers in Aging Neuroscience. 15. doi:10.3389/fnagi.2023.1281581. ISSN 1663-4365. PMC 10702235. PMID 38076538. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10702235
Takai H, Smogorzewska A, de Lange T (September 2003). "DNA damage foci at dysfunctional telomeres". Current Biology. 13 (17): 1549–1556. Bibcode:2003CBio...13.1549T. doi:10.1016/S0960-9822(03)00542-6. PMID 12956959. S2CID 5626820. /wiki/Agata_Smogorzewska
Takai H, Smogorzewska A, de Lange T (September 2003). "DNA damage foci at dysfunctional telomeres". Current Biology. 13 (17): 1549–1556. Bibcode:2003CBio...13.1549T. doi:10.1016/S0960-9822(03)00542-6. PMID 12956959. S2CID 5626820. /wiki/Agata_Smogorzewska
Vazquez-Villaseñor I, Garwood CJ, Heath PR, Simpson JE, Ince PG, Wharton SB (February 2020). "Expression of p16 and p21 in the frontal association cortex of ALS/MND brains suggests neuronal cell cycle dysregulation and astrocyte senescence in early stages of the disease". Neuropathology and Applied Neurobiology. 46 (2): 171–185. doi:10.1111/nan.12559. PMC 7217199. PMID 31077599. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7217199
Victorelli S, Passos JF (July 2017). "Telomeres and Cell Senescence - Size Matters Not". eBioMedicine. 21: 14–20. doi:10.1016/j.ebiom.2017.03.027. PMC 5514392. PMID 28347656. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5514392
Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR (February 2008). "Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7". Cell. 132 (3): 363–374. doi:10.1016/j.cell.2007.12.032. PMC 2266096. PMID 18267069. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2266096
Blagosklonny, Mikhail V. (2023-02-19). "Cellular senescence: when growth stimulation meets cell cycle arrest". Aging. 15 (4): 905–913. doi:10.18632/aging.204543. ISSN 1945-4589. PMC 10008486. PMID 36805938. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10008486
Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR (February 2008). "Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7". Cell. 132 (3): 363–374. doi:10.1016/j.cell.2007.12.032. PMC 2266096. PMID 18267069. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2266096
Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B, et al. (August 2005). "Oncogene-induced senescence as an initial barrier in lymphoma development". Nature. 436 (7051): 660–665. Bibcode:2005Natur.436..660B. doi:10.1038/nature03841. PMID 16079837. S2CID 4373792. /wiki/Bibcode_(identifier)
Takai H, Smogorzewska A, de Lange T (September 2003). "DNA damage foci at dysfunctional telomeres". Current Biology. 13 (17): 1549–1556. Bibcode:2003CBio...13.1549T. doi:10.1016/S0960-9822(03)00542-6. PMID 12956959. S2CID 5626820. /wiki/Agata_Smogorzewska
Rivera T, Haggblom C, Cosconati S, Karlseder J (January 2017). "A balance between elongation and trimming regulates telomere stability in stem cells". Nature Structural & Molecular Biology. 24 (1): 30–39. doi:10.1038/nsmb.3335. PMC 5215970. PMID 27918544. /wiki/Jan_Karlseder
Takai H, Smogorzewska A, de Lange T (September 2003). "DNA damage foci at dysfunctional telomeres". Current Biology. 13 (17): 1549–1556. Bibcode:2003CBio...13.1549T. doi:10.1016/S0960-9822(03)00542-6. PMID 12956959. S2CID 5626820. /wiki/Agata_Smogorzewska
Victorelli S, Passos JF (July 2017). "Telomeres and Cell Senescence - Size Matters Not". eBioMedicine. 21: 14–20. doi:10.1016/j.ebiom.2017.03.027. PMC 5514392. PMID 28347656. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5514392
Cao K, Blair CD, Faddah DA, Kieckhaefer JE, Olive M, Erdos MR, et al. (July 2011). "Progerin and telomere dysfunction collaborate to trigger cellular senescence in normal human fibroblasts". The Journal of Clinical Investigation. 121 (7): 2833–2844. doi:10.1172/JCI43578. PMC 3223819. PMID 21670498. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3223819
Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR (February 2008). "Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7". Cell. 132 (3): 363–374. doi:10.1016/j.cell.2007.12.032. PMC 2266096. PMID 18267069. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2266096
Yun MH (2018-06-21). "Cellular senescence in tissue repair: every cloud has a silver lining". The International Journal of Developmental Biology. 62 (6–7–8): 591–604. doi:10.1387/ijdb.180081my. PMID 29938770. https://doi.org/10.1387%2Fijdb.180081my
Childs BG, Baker DJ, Kirkland JL, Campisi J, van Deursen JM (November 2014). "Senescence and apoptosis: dueling or complementary cell fates?". EMBO Reports. 15 (11): 1139–1153. doi:10.15252/embr.201439245. PMC 4253488. PMID 25312810. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4253488
Ha L, Ichikawa T, Anver M, Dickins R, Lowe S, Sharpless NE, et al. (June 2007). "ARF functions as a melanoma tumor suppressor by inducing p53-independent senescence". Proceedings of the National Academy of Sciences of the United States of America. 104 (26): 10968–10973. Bibcode:2007PNAS..10410968H. doi:10.1073/pnas.0611638104. PMC 1904138. PMID 17576930. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1904138
Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B, et al. (August 2005). "Oncogene-induced senescence as an initial barrier in lymphoma development". Nature. 436 (7051): 660–665. Bibcode:2005Natur.436..660B. doi:10.1038/nature03841. PMID 16079837. S2CID 4373792. /wiki/Bibcode_(identifier)
Lazzerini Denchi E, Attwooll C, Pasini D, Helin K (April 2005). "Deregulated E2F activity induces hyperplasia and senescence-like features in the mouse pituitary gland". Molecular and Cellular Biology. 25 (7): 2660–2672. doi:10.1128/MCB.25.7.2660-2672.2005. OCLC 842574443. PMC 1061636. PMID 15767672. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1061636
Collado M, Blasco MA, Serrano M (July 2007). "Cellular senescence in cancer and aging". Cell. 130 (2): 223–233. doi:10.1016/j.cell.2007.07.003. PMID 17662938. S2CID 18689141. https://doi.org/10.1016%2Fj.cell.2007.07.003
Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, et al. (February 2007). "Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas". Nature. 445 (7128): 656–660. doi:10.1038/nature05529. PMC 4601097. PMID 17251933. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4601097
Childs BG, Baker DJ, Kirkland JL, Campisi J, van Deursen JM (November 2014). "Senescence and apoptosis: dueling or complementary cell fates?". EMBO Reports. 15 (11): 1139–1153. doi:10.15252/embr.201439245. PMC 4253488. PMID 25312810. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4253488
Ben-Porath I, Weinberg RA (May 2005). "The signals and pathways activating cellular senescence". The International Journal of Biochemistry & Cell Biology. 37 (5): 961–976. doi:10.1016/j.biocel.2004.10.013. PMID 15743671. /wiki/Doi_(identifier)
Ben-Porath I, Weinberg RA (May 2005). "The signals and pathways activating cellular senescence". The International Journal of Biochemistry & Cell Biology. 37 (5): 961–976. doi:10.1016/j.biocel.2004.10.013. PMID 15743671. /wiki/Doi_(identifier)
Ghosh K, Capell BC (November 2016). "The Senescence-Associated Secretory Phenotype: Critical Effector in Skin Cancer and Aging". The Journal of Investigative Dermatology. 136 (11): 2133–2139. doi:10.1016/j.jid.2016.06.621. PMC 5526201. PMID 27543988. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526201
Anerillas C, Abdelmohsen K, Gorospe M (April 2020). "Regulation of senescence traits by MAPKs". GeroScience. 42 (2): 397–408. doi:10.1007/s11357-020-00183-3. PMC 7205942. PMID 32300964. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7205942
Carosi JM, Fourrier C, Bensalem J, Sargeant TJ (202). "The mTOR-lysosome axis at the centre of ageing". FEBS Open Bio. 12 (4): 739–757. doi:10.1002/2211-5463.13347. PMC 8972043. PMID 34878722. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8972043
Gurkar AU, Gerencser AA, Passos JF (2023). "Spatial mapping of cellular senescence: emerging challenges and opportunities". Nature Aging. 3 (7): 776–790. doi:10.1038/s43587-023-00446-6. PMC 10505496. PMID 37400722. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10505496
Gurkar AU, Gerencser AA, Passos JF (2023). "Spatial mapping of cellular senescence: emerging challenges and opportunities". Nature Aging. 3 (7): 776–790. doi:10.1038/s43587-023-00446-6. PMC 10505496. PMID 37400722. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10505496
SenNet Consortium (2022). "NIH SenNet Consortium to map senescent cells throughout the human lifespan to understand physiological health". Nature Aging. 2 (12): 1090–1100. doi:10.1038/s43587-022-00326-5. PMC 10019484. PMID 36936385. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10019484
Wyld L, Bellantuono I, Tchkonia T, Morgan J, Turner O, Foss F, et al. (July 2020). "Senescence and Cancer: A Review of Clinical Implications of Senescence and Senotherapies". Cancers. 12 (8): e2134. doi:10.3390/cancers12082134. PMC 7464619. PMID 32752135. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7464619
Kirkland JL, Tchkonia T (November 2020). "Senolytic drugs: from discovery to translation". Journal of Internal Medicine. 288 (5): 518–536. doi:10.1111/joim.13141. PMC 7405395. PMID 32686219. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7405395
Kirkland JL, Tchkonia T (November 2020). "Senolytic drugs: from discovery to translation". Journal of Internal Medicine. 288 (5): 518–536. doi:10.1111/joim.13141. PMC 7405395. PMID 32686219. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7405395
Burton DG, Krizhanovsky V (November 2014). "Physiological and pathological consequences of cellular senescence". Cellular and Molecular Life Sciences. 71 (22): 4373–4386. doi:10.1007/s00018-014-1691-3. PMC 4207941. PMID 25080110. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4207941
Collado M, Blasco MA, Serrano M (July 2007). "Cellular senescence in cancer and aging". Cell. 130 (2): 223–233. doi:10.1016/j.cell.2007.07.003. PMID 17662938. S2CID 18689141. https://doi.org/10.1016%2Fj.cell.2007.07.003
Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R, Desmet CJ, et al. (June 2008). "Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network". Cell. 133 (6): 1019–1031. doi:10.1016/j.cell.2008.03.039. PMID 18555778. S2CID 15295092. https://doi.org/10.1016%2Fj.cell.2008.03.039
Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, et al. (November 2011). "Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders". Nature. 479 (7372): 232–236. Bibcode:2011Natur.479..232B. doi:10.1038/nature10600. PMC 3468323. PMID 22048312. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3468323
Rayess H, Wang MB, Srivatsan ES (April 2012). "Cellular senescence and tumor suppressor gene p16". International Journal of Cancer. 130 (8): 1715–1725. doi:10.1002/ijc.27316. PMC 3288293. PMID 22025288. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3288293
Narasimha AM, Kaulich M, Shapiro GS, Choi YJ, Sicinski P, Dowdy SF (June 2014). "Cyclin D activates the Rb tumor suppressor by mono-phosphorylation". eLife. 3. doi:10.7554/eLife.02872. PMC 4076869. PMID 24876129. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4076869
Rayess H, Wang MB, Srivatsan ES (April 2012). "Cellular senescence and tumor suppressor gene p16". International Journal of Cancer. 130 (8): 1715–1725. doi:10.1002/ijc.27316. PMC 3288293. PMID 22025288. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3288293
Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, et al. (November 2011). "Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders". Nature. 479 (7372): 232–236. Bibcode:2011Natur.479..232B. doi:10.1038/nature10600. PMC 3468323. PMID 22048312. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3468323
Vazquez-Villaseñor I, Garwood CJ, Heath PR, Simpson JE, Ince PG, Wharton SB (February 2020). "Expression of p16 and p21 in the frontal association cortex of ALS/MND brains suggests neuronal cell cycle dysregulation and astrocyte senescence in early stages of the disease". Neuropathology and Applied Neurobiology. 46 (2): 171–185. doi:10.1111/nan.12559. PMC 7217199. PMID 31077599. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7217199
Chinta SJ, Woods G, Rane A, Demaria M, Campisi J, Andersen JK (August 2015). "Cellular senescence and the aging brain". Experimental Gerontology. 68: 3–7. doi:10.1016/j.exger.2014.09.018. PMC 4382436. PMID 25281806. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382436
Dehkordi SK, Walker J, Sah E, Bennett E, Atrian F, Frost B, et al. (December 2021). "Profiling senescent cells in human brains reveals neurons with CDKN2D/p19 and tau neuropathology". Nature Aging. 1 (12): 1107–1116. doi:10.1038/s43587-021-00142-3. PMC 9075501. PMID 35531351. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9075501
Acosta JC, O'Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S, et al. (June 2008). "Chemokine signaling via the CXCR2 receptor reinforces senescence". Cell. 133 (6): 1006–1018. doi:10.1016/j.cell.2008.03.038. PMID 18555777. S2CID 6708172. https://doi.org/10.1016%2Fj.cell.2008.03.038
Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R, Desmet CJ, et al. (June 2008). "Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network". Cell. 133 (6): 1019–1031. doi:10.1016/j.cell.2008.03.039. PMID 18555778. S2CID 15295092. https://doi.org/10.1016%2Fj.cell.2008.03.039
Malaquin N, Martinez A, Rodier F (September 2016). "Keeping the senescence secretome under control: Molecular reins on the senescence-associated secretory phenotype". Experimental Gerontology. 82: 39–49. doi:10.1016/j.exger.2016.05.010. PMID 27235851. S2CID 207584394. /wiki/Doi_(identifier)
Soto-Gamez A, Quax WJ, Demaria M (July 2019). "Regulation of Survival Networks in Senescent Cells: From Mechanisms to Interventions". Journal of Molecular Biology. 431 (15): 2629–2643. doi:10.1016/j.jmb.2019.05.036. PMID 31153901. https://doi.org/10.1016%2Fj.jmb.2019.05.036
Soto-Gamez A, Quax WJ, Demaria M (July 2019). "Regulation of Survival Networks in Senescent Cells: From Mechanisms to Interventions". Journal of Molecular Biology. 431 (15): 2629–2643. doi:10.1016/j.jmb.2019.05.036. PMID 31153901. https://doi.org/10.1016%2Fj.jmb.2019.05.036
Liu XL, Ding J, Meng LH (October 2018). "Oncogene-induced senescence: a double edged sword in cancer". Acta Pharmacologica Sinica. 39 (10): 1553–1558. doi:10.1038/aps.2017.198. PMC 6289471. PMID 29620049. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6289471
Lyamina S, Baranovskii D, Kozhevnikova E, Ivanova T, Kalish S, Sadekov T, et al. (March 2023). "Mesenchymal Stromal Cells as a Driver of Inflammaging". International Journal of Molecular Sciences. 24 (7): 6372. doi:10.3390/ijms24076372. PMC 10094085. PMID 37047346. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10094085
Baker JR, Vuppusetty C, Colley T, Hassibi S, Fenwick PS, Donnelly LE, et al. (February 2019). "MicroRNA-570 is a novel regulator of cellular senescence and inflammaging". FASEB Journal. 33 (2): 1605–1616. doi:10.1096/fj.201800965R. PMC 6338629. PMID 30156909. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6338629
Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP, et al. (August 2013). "A complex secretory program orchestrated by the inflammasome controls paracrine senescence". Nature Cell Biology. 15 (8): 978–990. doi:10.1038/ncb2784. PMC 3732483. PMID 23770676. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3732483
Lawrence Berkeley National Laboratory. United States. Department of Energy. Office of Scientific and Technical Information (2008). Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor. Lawrence Berkeley National Laboratory. OCLC 893411490. /wiki/OCLC_(identifier)
Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R, Desmet CJ, et al. (June 2008). "Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network". Cell. 133 (6): 1019–1031. doi:10.1016/j.cell.2008.03.039. PMID 18555778. S2CID 15295092. https://doi.org/10.1016%2Fj.cell.2008.03.039
Chien Y, Scuoppo C, Wang X, Fang X, Balgley B, Bolden JE, et al. (October 2011). "Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity". Genes & Development. 25 (20): 2125–2136. doi:10.1101/gad.17276711. PMC 3205583. PMID 21979375. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3205583
Casella G, Munk R, Kim KM, Piao Y, De S, Abdelmohsen K, Gorospe M (August 2019). "Transcriptome signature of cellular senescence". Nucleic Acids Research. 47 (14): 7294–7305. doi:10.1093/nar/gkz555. PMC 6698740. PMID 31251810. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6698740
Coppé JP, Desprez PY, Krtolica A, Campisi J (January 2010). "The senescence-associated secretory phenotype: the dark side of tumor suppression". Annual Review of Pathology. 5 (1): 99–118. doi:10.1146/annurev-pathol-121808-102144. PMC 4166495. PMID 20078217. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4166495
Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (March 1997). "Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a". Cell. 88 (5): 593–602. doi:10.1016/s0092-8674(00)81902-9. PMID 9054499. S2CID 17518294. https://doi.org/10.1016%2Fs0092-8674%2800%2981902-9
Milanovic M, Fan DN, Belenki D, Däbritz JH, Zhao Z, Yu Y, et al. (January 2018). "Senescence-associated reprogramming promotes cancer stemness" (PDF). Nature. 553 (7686). BioScientifica: 96–100. Bibcode:2018Natur.553...96M. doi:10.1530/endoabs.56.s25.2. PMID 29258294. http://edoc.mdc-berlin.de/16986/3/16986oa.pdf
Salama R, Sadaie M, Hoare M, Narita M (January 2014). "Cellular senescence and its effector programs". Genes & Development. 28 (2): 99–114. doi:10.1101/gad.235184.113. PMC 3909793. PMID 24449267. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3909793
Salama R, Sadaie M, Hoare M, Narita M (January 2014). "Cellular senescence and its effector programs". Genes & Development. 28 (2): 99–114. doi:10.1101/gad.235184.113. PMC 3909793. PMID 24449267. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3909793
Serrano M (November 2011). "Cancer: final act of senescence". Nature. 479 (7374): 481–482. Bibcode:2011Natur.479..481S. doi:10.1038/479481a. PMID 22113687. S2CID 36154048. https://doi.org/10.1038%2F479481a
Narasimhan A, Flores RR, Robbins PD, Niedernhofer LJ (October 2021). "Role of Cellular Senescence in Type II Diabetes". Endocrinology. 162 (10). doi:10.1210/endocr/bqab136. PMC 8386762. PMID 34363464. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8386762
Childs BG, Durik M, Baker DJ, van Deursen JM (December 2015). "Cellular senescence in aging and age-related disease: from mechanisms to therapy". Nature Medicine. 21 (12): 1424–1435. doi:10.1038/nm.4000. PMC 4748967. PMID 26646499. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4748967
Childs BG, Durik M, Baker DJ, van Deursen JM (December 2015). "Cellular senescence in aging and age-related disease: from mechanisms to therapy". Nature Medicine. 21 (12): 1424–1435. doi:10.1038/nm.4000. PMC 4748967. PMID 26646499. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4748967
Salama R, Sadaie M, Hoare M, Narita M (January 2014). "Cellular senescence and its effector programs". Genes & Development. 28 (2): 99–114. doi:10.1101/gad.235184.113. PMC 3909793. PMID 24449267. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3909793
Sagiv A, Krizhanovsky V (December 2013). "Immunosurveillance of senescent cells: the bright side of the senescence program". Biogerontology. 14 (6): 617–628. doi:10.1007/s10522-013-9473-0. PMID 24114507. S2CID 2775067. /wiki/Doi_(identifier)
Song P, An J, Zou MH (March 2020). "Immune Clearance of Senescent Cells to Combat Ageing and Chronic Diseases". Cells. 9 (3): E671. doi:10.3390/cells9030671. PMC 7140645. PMID 32164335. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7140645
Sagiv A, Krizhanovsky V (December 2013). "Immunosurveillance of senescent cells: the bright side of the senescence program". Biogerontology. 14 (6): 617–628. doi:10.1007/s10522-013-9473-0. PMID 24114507. S2CID 2775067. /wiki/Doi_(identifier)
Antonangeli F, Zingoni A, Soriani A, Santoni A (June 2019). "Senescent cells: Living or dying is a matter of NK cells". Journal of Leukocyte Biology. 105 (6): 1275–1283. doi:10.1002/JLB.MR0718-299R. PMID 30811627. S2CID 73469394. /wiki/Doi_(identifier)
Antonangeli F, Zingoni A, Soriani A, Santoni A (June 2019). "Senescent cells: Living or dying is a matter of NK cells". Journal of Leukocyte Biology. 105 (6): 1275–1283. doi:10.1002/JLB.MR0718-299R. PMID 30811627. S2CID 73469394. /wiki/Doi_(identifier)
Prata LG, Ovsyannikova IG, Tchkonia T, Kirkland JL (December 2018). "Senescent cell clearance by the immune system: Emerging therapeutic opportunities". Seminars in Immunology. 40: 101275. doi:10.1016/j.smim.2019.04.003. PMC 7061456. PMID 31088710. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7061456
Song P, An J, Zou MH (March 2020). "Immune Clearance of Senescent Cells to Combat Ageing and Chronic Diseases". Cells. 9 (3): E671. doi:10.3390/cells9030671. PMC 7140645. PMID 32164335. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7140645
Song P, Zhao Q, Zou MH (July 2020). "Targeting senescent cells to attenuate cardiovascular disease progression". Ageing Research Reviews. 60: 101072. doi:10.1016/j.arr.2020.101072. PMC 7263313. PMID 32298812. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7263313
Radosavljevic M, Cuillerier B, Wilson MJ, Clément O, Wicker S, Gilfillan S, et al. (January 2002). "A cluster of ten novel MHC class I related genes on human chromosome 6q24.2-q25.3". Genomics. 79 (1): 114–123. doi:10.1006/geno.2001.6673. PMID 11827464. /wiki/Doi_(identifier)
Prata LG, Ovsyannikova IG, Tchkonia T, Kirkland JL (December 2018). "Senescent cell clearance by the immune system: Emerging therapeutic opportunities". Seminars in Immunology. 40: 101275. doi:10.1016/j.smim.2019.04.003. PMC 7061456. PMID 31088710. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7061456
Prata LG, Ovsyannikova IG, Tchkonia T, Kirkland JL (December 2018). "Senescent cell clearance by the immune system: Emerging therapeutic opportunities". Seminars in Immunology. 40: 101275. doi:10.1016/j.smim.2019.04.003. PMC 7061456. PMID 31088710. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7061456
Antonangeli F, Zingoni A, Soriani A, Santoni A (June 2019). "Senescent cells: Living or dying is a matter of NK cells". Journal of Leukocyte Biology. 105 (6): 1275–1283. doi:10.1002/JLB.MR0718-299R. PMID 30811627. S2CID 73469394. /wiki/Doi_(identifier)
Prata LG, Ovsyannikova IG, Tchkonia T, Kirkland JL (December 2018). "Senescent cell clearance by the immune system: Emerging therapeutic opportunities". Seminars in Immunology. 40: 101275. doi:10.1016/j.smim.2019.04.003. PMC 7061456. PMID 31088710. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7061456
Frasca D (July 2018). "Senescent B cells in aging and age-related diseases: Their role in the regulation of antibody responses". Experimental Gerontology. 107: 55–58. doi:10.1016/j.exger.2017.07.002. PMC 5754260. PMID 28687479. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5754260
Pereira BI, Akbar AN (2016). "Convergence of Innate and Adaptive Immunity during Human Aging". Frontiers in Immunology. 7: 445. doi:10.3389/fimmu.2016.00445. PMC 5095488. PMID 27867379. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095488
Song P, An J, Zou MH (March 2020). "Immune Clearance of Senescent Cells to Combat Ageing and Chronic Diseases". Cells. 9 (3): E671. doi:10.3390/cells9030671. PMC 7140645. PMID 32164335. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7140645
Song P, An J, Zou MH (March 2020). "Immune Clearance of Senescent Cells to Combat Ageing and Chronic Diseases". Cells. 9 (3): E671. doi:10.3390/cells9030671. PMC 7140645. PMID 32164335. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7140645
Wagner V, Gil J (July 2020). "T cells engineered to target senescence". Nature. 583 (7814): 37–38. Bibcode:2020Natur.583...37W. doi:10.1038/d41586-020-01759-x. hdl:10044/1/80980. PMID 32601490. S2CID 220260026. https://doi.org/10.1038%2Fd41586-020-01759-x
Amor C, Feucht J, Leibold J, Ho YJ, Zhu C, Alonso-Curbelo D, et al. (July 2020). "Senolytic CAR T cells reverse senescence-associated pathologies". Nature. 583 (7814): 127–132. Bibcode:2020Natur.583..127A. doi:10.1038/s41586-020-2403-9. PMC 7583560. PMID 32555459. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7583560
Kale A, Sharma A, Stolzing A, Desprez PY, Campisi J (2020). "Role of immune cells in the removal of deleterious senescent cells". Immunity & Ageing. 17: 16. doi:10.1186/s12979-020-00187-9. PMC 7271494. PMID 32518575. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7271494
Muñoz-Espín D, Cañamero M, Maraver A, Gómez-López G, Contreras J, Murillo-Cuesta S, et al. (November 2013). "Programmed cell senescence during mammalian embryonic development". Cell. 155 (5): 1104–1118. doi:10.1016/j.cell.2013.10.019. hdl:20.500.11940/3668. PMID 24238962. https://doi.org/10.1016%2Fj.cell.2013.10.019
Muñoz-Espín D, Cañamero M, Maraver A, Gómez-López G, Contreras J, Murillo-Cuesta S, et al. (November 2013). "Programmed cell senescence during mammalian embryonic development". Cell. 155 (5): 1104–1118. doi:10.1016/j.cell.2013.10.019. hdl:20.500.11940/3668. PMID 24238962. https://doi.org/10.1016%2Fj.cell.2013.10.019
Yun MH (2018-06-21). "Cellular senescence in tissue repair: every cloud has a silver lining". The International Journal of Developmental Biology. 62 (6–7–8): 591–604. doi:10.1387/ijdb.180081my. PMID 29938770. https://doi.org/10.1387%2Fijdb.180081my
Yun MH (2018-06-21). "Cellular senescence in tissue repair: every cloud has a silver lining". The International Journal of Developmental Biology. 62 (6–7–8): 591–604. doi:10.1387/ijdb.180081my. PMID 29938770. https://doi.org/10.1387%2Fijdb.180081my
Childs BG, Baker DJ, Kirkland JL, Campisi J, van Deursen JM (November 2014). "Senescence and apoptosis: dueling or complementary cell fates?". EMBO Reports. 15 (11): 1139–1153. doi:10.15252/embr.201439245. PMC 4253488. PMID 25312810. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4253488
Zhang M, Serna-Salas S, Damba T, Borghesan M, Demaria M, Moshage H (October 2021). "Hepatic stellate cell senescence in liver fibrosis: Characteristics, mechanisms and perspectives". Mechanisms of Ageing and Development. 199: 111572. doi:10.1016/j.mad.2021.111572. PMID 34536446. S2CID 237524296. https://doi.org/10.1016%2Fj.mad.2021.111572
Solana R, Tarazona R, Gayoso I, Lesur O, Dupuis G, Fulop T (October 2012). "Innate immunosenescence: effect of aging on cells and receptors of the innate immune system in humans". Seminars in Immunology. 24 (5): 331–341. doi:10.1016/j.smim.2012.04.008. PMID 22560929. /wiki/Doi_(identifier)
Khosla S, Farr JN, Tchkonia T, Kirkland JL (May 2020). "The role of cellular senescence in ageing and endocrine disease". Nature Reviews. Endocrinology. 16 (5): 263–275. doi:10.1038/s41574-020-0335-y. PMC 7227781. PMID 32161396. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7227781
Bernardes de Jesus B, Blasco MA (June 2012). "Assessing cell and organ senescence biomarkers". Circulation Research. 111 (1): 97–109. doi:10.1161/CIRCRESAHA.111.247866. PMC 4824275. PMID 22723221. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824275
Childs BG, Durik M, Baker DJ, van Deursen JM (December 2015). "Cellular senescence in aging and age-related disease: from mechanisms to therapy". Nature Medicine. 21 (12): 1424–1435. doi:10.1038/nm.4000. PMC 4748967. PMID 26646499. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4748967
Trias E, Beilby PR, Kovacs M, Ibarburu S, Varela V, Barreto-Núñez R, et al. (2019). "Emergence of Microglia Bearing Senescence Markers During Paralysis Progression in a Rat Model of Inherited ALS". Frontiers in Aging Neuroscience. 11: 42. doi:10.3389/fnagi.2019.00042. PMC 6403180. PMID 30873018. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403180
Zhang P, Kishimoto Y, Grammatikakis I, Gottimukkala K, Cutler RG, Zhang S, et al. (May 2019). "Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer's disease model". Nature Neuroscience. 22 (5): 719–728. doi:10.1038/s41593-019-0372-9. PMC 6605052. PMID 30936558. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6605052
Aguayo-Mazzucato C, Andle J, Lee TB, Midha A, Talemal L, Chipashvili V, et al. (July 2019). "Acceleration of β Cell Aging Determines Diabetes and Senolysis Improves Disease Outcomes". Cell Metabolism. 30 (1): 129–142.e4. doi:10.1016/j.cmet.2019.05.006. PMC 6610720. PMID 31155496. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6610720
Stokar, Joshua (July 2023). "Targeting senescent cells in ageing-related endocrine diseases". Nature Reviews Endocrinology. 19 (7): 382. doi:10.1038/s41574-023-00848-x. ISSN 1759-5037. PMID 37173439. https://www.nature.com/articles/s41574-023-00848-x
Sinha JK, Ghosh S, Raghunath M (May 2014). "Progeria: a rare genetic premature ageing disorder". The Indian Journal of Medical Research. 139 (5): 667–674. PMC 4140030. PMID 25027075. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4140030
Carrero D, Soria-Valles C, López-Otín C (July 2016). "Hallmarks of progeroid syndromes: lessons from mice and reprogrammed cells". Disease Models & Mechanisms. 9 (7): 719–735. doi:10.1242/dmm.024711. PMC 4958309. PMID 27482812. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4958309
Childs BG, Durik M, Baker DJ, van Deursen JM (December 2015). "Cellular senescence in aging and age-related disease: from mechanisms to therapy". Nature Medicine. 21 (12): 1424–1435. doi:10.1038/nm.4000. PMC 4748967. PMID 26646499. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4748967
Kirkland JL, Tchkonia T, Zhu Y, Niedernhofer LJ, Robbins PD (October 2017). "The Clinical Potential of Senolytic Drugs". Journal of the American Geriatrics Society. 65 (10): 2297–2301. doi:10.1111/jgs.14969. PMC 5641223. PMID 28869295. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5641223
Sahu S, Dattani A, Aboobaker AA (October 2017). "Secrets from immortal worms: What can we learn about biological ageing from the planarian model system?". Seminars in Cell & Developmental Biology. Science communication in the field of fundamental biomedical research. 70: 108–121. doi:10.1016/j.semcdb.2017.08.028. PMID 28818620. https://ora.ox.ac.uk/objects/uuid:141ac384-2ac8-4507-898b-c3c59f03423e
Burton DG, Faragher RG (2015). "Cellular senescence: from growth arrest to immunogenic conversion". Age. 37 (2): 27. doi:10.1007/s11357-015-9764-2. PMC 4365077. PMID 25787341. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4365077