The Antarctic ice sheet covers an area of almost 14 million square kilometres (5.4 million square miles) and contains 26.5 million cubic kilometres (6,400,000 cubic miles) of ice. A cubic kilometer of ice weighs approximately 0.92 metric gigatonnes, meaning that the ice sheet weighs about 24,380,000 gigatonnes. This ice is equivalent to around 61% of all fresh water on Earth.
The only other currently existing ice sheet on Earth is the Greenland ice sheet in the Arctic.
The EAIS rests on a major land mass, but the bed of the WAIS is, in places, more than 2,500 meters (8,200 feet) below sea level. It would be seabed if the ice sheet were not there. The WAIS is classified as a marine-based ice sheet, meaning that its bed lies below sea level and its edges flow into floating ice shelves. The WAIS is bounded by the Ross Ice Shelf, the Filchner-Ronne Ice Shelf, and outlet glaciers that drain into the Amundsen Sea. Thwaites Glacier and Pine Island Glacier are the two most important outlet glaciers.
Antarctica is the coldest, driest continent on Earth, and has the highest average elevation. Antarctica's dryness means the air contains little water vapor and conducts heat poorly. The Southern Ocean surrounding the continent is far more effective at absorbing heat than any other ocean. The presence of extensive, year-round sea ice, which has a high albedo (reflectivity), adds to the albedo of the ice sheets' own bright, white surface. Antarctica's coldness means it is the only place on Earth where an atmospheric temperature inversion occurs every winter; elsewhere on Earth, the atmosphere is at its warmest near the surface and becomes cooler as elevation increases. During the Antarctic winter, the surface of central Antarctica becomes cooler than middle layers of the atmosphere; this means greenhouse gases trap heat in the middle atmosphere, and reduce its flow toward the surface and toward space, rather than preventing the flow of heat from the lower atmosphere to the upper layers. This effect lasts until the end of the Antarctic winter. Early climate models predicted temperature trends over Antarctica would emerge more slowly and be more subtle than those elsewhere.
Nevertheless, the paper received widespread media coverage, as multiple journalists described these findings as "contradictory" to global warming, which was criticized by scientists at the time. The "controversy" around cooling of Antarctica received further attention in 2004 when Michael Crichton wrote the novel State of Fear. The novel featured a fictional conspiracy among climate scientists to fake evidence of global warming, and cited Doran's study as proof that there was no warming in Antarctica outside of the Peninsula. That novel was mentioned in a 2006 US Senate hearing in support of climate change denial, and Peter Doran published a statement in The New York Times decrying the misinterpretation of his work. The British Antarctic Survey and NASA also issued statements affirming the strength of climate science after the hearing.
By 2009, researchers were able to combine historical weather-station data with satellite measurements to create consistent temperature records going back to 1957 that demonstrated warming of >0.05 °C per decade across the continent, with cooling in East Antarctica offset by the average temperature increase of at least 0.176 ± 0.06 °C per decade in West Antarctica. That paper was widely reported on, and subsequent research confirmed clear warming over West Antarctica in the 20th century, with the only uncertainty being the magnitude. During 2012–2013, estimates based on WAIS Divide ice cores and revised temperature records from Byrd Station suggested a much-larger West-Antarctica warming of 2.4 °C (4.3 °F) since 1958, or around 0.46 °C (0.83 °F) per decade, although some scientists continued to emphasize uncertainty. In 2022, a study narrowed the warming of the Central area of the West Antarctic Ice Sheet between 1959 and 2000 to 0.31 °C (0.56 °F) per decade, and conclusively attributed it to increases in greenhouse gas concentrations caused by human activity. Likewise, the strong cooling at McMurdo Dry Valleys was confirmed to be a local trend.
The Antarctica-wide warming trend continued after 2000, and in February 2020, the continent recorded its highest-ever temperature of 18.3 °C, exceeding the previous record of 17.5 °C in March 2015. The East Antarctica interior also demonstrated clear warming between 2000 and 2020. In particular, the South Pole warmed by 0.61 ± 0.34 °C per decade between 1990 and 2020, which is three times the global average. On the other hand, changes in atmospheric circulation patterns like the Interdecadal Pacific Oscillation (IPO) and the Southern Annular Mode (SAM) slowed or partially reversed the warming of West Antarctica, with the Antarctic Peninsula experiencing cooling from 2002. While a variability in those patterns is natural, past ozone depletion had also led the SAM to be stronger than it had been in the past 600 years of observations. Starting around 2002, studies predicted a reversal in the SAM once the ozone layer began to recover following the Montreal Protocol, and these changes are consistent with their predictions.
Under the most intense Contrasting temperature trends across parts of Antarctica mean that some locations, particularly at the coasts, lose mass while locations further inland continue to gain mass. These contrasting trends and the remoteness of the region make estimating an average trend difficult.
By 2100, net ice loss from Antarctica is expected to add about 11 cm (4.3 in) to global sea-level rise.: 1270 Other processes may cause West Antarctica to contribute more to sea-level rise. Marine ice-sheet instability is the potential for warm water currents to enter between the seafloor and the base of the ice sheet once the sheet is no longer heavy enough to displace such flows. Marine ice-cliff instability may cause ice cliffs taller than 100 m (330 ft) to collapse under their own weight once they are no longer buttressed by ice shelves. This process has never been observed and it only occurs in some models. By 2100, these processes may increase sea-level rise caused by Antarctica to 41 cm (16 in) under the low-emission scenario and by 57 cm (22 in) under the high-emission scenario.: 1270
Some scientists have given greater estimates but all agree melting in Antarctica would have a greater impact and would be much more likely to occur under higher warming scenarios, where it may double the overall 21st-century sea-level rise to 2 m (7 ft) or more. According to one study, if the While these effects weren't fully caused by climate change, with some role played by the natural cycle of Interdecadal Pacific Oscillation, they are likely to worsen in the future. As of early 2020s, climate models' best, limited-confidence estimate is that the lower cell would continue to weaken, while the upper cell may strengthen by around 20% over the 21st century. A key reason for the uncertainty is limited certainty about future ice loss from Antarctica and the poor and inconsistent representation of ocean stratification in even the CMIP6 models - the most advanced generation available as of early 2020s. One study suggests that the circulation would lose half its strength by 2050 under the worst climate change scenario, with greater losses occurring afterwards.
It is possible that the South Ocean overturning circulation may not simply continue to weaken in response to increased warming and freshening, but will eventually collapse outright, in a way which would be difficult to reverse and constitute an example of tipping points in the climate system. This would be similar to some projections for Atlantic meridional overturning circulation (AMOC), which is also affected by the ocean warming and by meltwater flows from the declining Greenland ice sheet. However, Southern Hemisphere is only inhabited by 10% of the world's population, and the Southern Ocean overturning circulation has historically received much less attention than the AMOC. Some preliminary research suggests that such a collapse may become likely once global warming reaches levels between 1.7 °C (3.1 °F) and 3 °C (5.4 °F), but there is far less certainty than with the estimates for most other tipping points in the climate system. Even if initiated in the near future, the circulation's collapse is unlikely to be complete until close to 2300, Similarly, impacts such as the reduction in precipitation in the Southern Hemisphere, with a corresponding increase in the North, or a decline of fisheries in the Southern Ocean with a potential collapse of certain marine ecosystems, are also expected to unfold over multiple centuries.
Sea levels will continue to rise long after 2100 but potentially at very different rates. According to the most-recent reports of the Intergovernmental Panel on Climate Change (SROCC and the IPCC Sixth Assessment Report), there will be a median rise of 16 cm (6.3 in) and maximum rise of 37 cm (15 in) under the low-emission scenario. The highest-emission scenario results in a median rise of 1.46 m (5 ft) with a minimum of 60 cm (2 ft) and a maximum of 2.89 m (9+1⁄2 ft).
Over longer timescales, the West Antarctic ice sheet, which is much smaller than the East Antarctic ice sheet and is grounded deep below sea level, is considered highly vulnerable. The melting of all of the ice in West Antarctica would increase global sea-level rise to 4.3 m (14 ft 1 in). Mountain ice caps that are not in contact with water are less vulnerable than the majority of the ice sheet, which is located below sea level. The collapse of the West Antarctic ice sheet would cause around 3.3 m (10 ft 10 in) of sea-level rise. This kind of collapse is now considered almost inevitable because it appears to have occurred during the Eemian period 125,000 years ago, when temperatures were similar to those in the early 21st century. The Amundsen Sea also appears to be warming at rates that, if continued, make the ice sheet's collapse inevitable.
The only way to reverse ice loss from West Antarctica once triggered is to lower the global temperature to 1 °C (1.8 °F) below the pre-industrial level, to 2 °C (3.6 °F) below the temperature of 2020. Other researchers said a climate engineering intervention to stabilize the ice sheet's glaciers may delay its loss by centuries and give the environment more time to adapt. This is an uncertain proposal and would be one of the most-expensive projects ever attempted. Otherwise, the disappearance of the West Antarctic ice sheet would take an estimated 2,000 years. The loss of West Antarctica ice would take at least 500 years and possibly as long as 13,000 years. Once the ice sheet is lost, the isostatic rebound of the land previously covered by the ice sheet would result in an additional 1 m (3 ft 3 in) of sea-level rise over the following 1,000 years.
If global warming were to reach higher levels, then the EAIS would play an increasingly larger role in sea level rise occurring after 2100. According to the most recent reports of the Intergovernmental Panel on Climate Change (SROCC and the IPCC Sixth Assessment Report), the most intense climate change scenario, where the anthropogenic emissions increase continuously, RCP8.5, would result in Antarctica alone losing a median of 1.46 m (4 ft 9 in) (confidence interval between 60 cm (2.0 ft) and 2.89 m (9 ft 6 in)) by 2300, which would involve some loss from the EAIS in addition to the erosion of the WAIS. This Antarctica-only sea level rise would be in addition to ice losses from the Greenland ice sheet and mountain glaciers, as well as the thermal expansion of ocean water. If the warming were to remain at elevated levels for a long time, then the East Antarctic Ice Sheet would eventually become the dominant contributor to sea level rise, simply because it contains the largest amount of ice.
Sustained ice loss from the EAIS would begin with the significant erosion of the so-called subglacial basins, such as Totten Glacier and Wilkes Basin, which are located in vulnerable locations below the sea level. Evidence from the Pleistocene shows that Wilkes Basin had likely lost enough ice to add 0.5 m (1 ft 8 in) to sea levels between 115,000 and 129,000 years ago, during the Eemian, and about 0.9 m (2 ft 11 in) between 318,000 and 339,000 years ago, during the Marine Isotope Stage 9. Neither Wilkes nor the other subglacial basins were lost entirely, but estimates suggest that they would be committed to disappearance once the global warming reaches 3 °C (5.4 °F) - the plausible temperature range is between 2 °C (3.6 °F) and 6 °C (11 °F). Then, the subglacial basins would gradually collapse over a period of around 2,000 years, although it may be as fast as 500 years or as slow as 10,000 years. Their loss would ultimately add between 1.4 m (4 ft 7 in) and 6.4 m (21 ft 0 in) to sea levels, depending on the ice sheet model used. Isostatic rebound of the newly ice-free land would also add 8 cm (3.1 in) and 57 cm (1 ft 10 in), respectively.
The entire East Antarctic Ice Sheet holds enough ice to raise global sea levels by 53.3 m (175 ft). Its complete melting is also possible, but it would require very high warming and a lot of time: In 2022, an extensive assessment of tipping points in the climate system published in Science Magazine concluded that the ice sheet would take a minimum of 10,000 years to fully melt. It would most likely be committed to complete disappearance only once the global warming reaches about 7.5 °C (13.5 °F), with the minimum and the maximum range between 5 °C (9.0 °F) and 10 °C (18 °F). Another estimate suggested that at least 6 °C (11 °F) would be needed to melt two thirds of its volume.
If the entire ice sheet were to disappear, then the change in
Amos, Jonathan (2013-03-08). "Antarctic ice volume measured". BBC News. Retrieved 2014-01-28. https://www.bbc.co.uk/news/science-environment-21692423
Fretwell, P.; et al. (28 February 2013). "Bedmap2: improved ice bed, surface and thickness datasets for Antarctica" (PDF). The Cryosphere. 7 (1): 390. Bibcode:2013TCry....7..375F. doi:10.5194/tc-7-375-2013. S2CID 13129041. Archived (PDF) from the original on 16 February 2020. Retrieved 6 January 2014. https://www.the-cryosphere.net/7/375/2013/tc-7-375-2013.pdf
Robinson, Ben (15 April 2019). "Scientists chart history of Greenland Ice Sheet for first time". The University of Manchester. Archived from the original on 7 December 2023. Retrieved 7 December 2023. https://www.manchester.ac.uk/discover/news/scientists-chart-history-of-greenland-ice-sheet-for-first-time/
Shepherd, Andrew (18 January 2024). "Antarctica and Greenland Ice Sheet Drainage Basins". imbie.org. Retrieved 31 January 2024. Antarctica is divided into the West Antarctic Ice Sheet, East Antarctic Ice Sheet and Antarctic Peninsula based on historical definitions plus information from modern-day DEM and ice velocity data. http://imbie.org/imbie-3/drainage-basins/
IPCC, 2021: Annex VII: Glossary [Matthews, J.B.R., V. Möller, R. van Diemen, J.S. Fuglestvedt, V. Masson-Delmotte, C. Méndez, S. Semenov, A. Reisinger (eds.)]. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 2215–2256, doi:10.1017/9781009157896.022. https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_AnnexVII.pdf
Rignot, Eric; Mouginot, Jérémie; Scheuchl, Bernd; van den Broeke, Michiel; van Wessem, Melchior J.; Morlighem, Mathieu (22 January 2019). "Four decades of Antarctic Ice Sheet mass balance from 1979–2017". Proceedings of the National Academy of Sciences. 116 (4): 1095–1103. Bibcode:2019PNAS..116.1095R. doi:10.1073/pnas.1812883116. PMC 6347714. PMID 30642972. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6347714
"Ice Sheets". National Science Foundation. https://www.nsf.gov/geo/opp/antarct/science/icesheet.jsp
Swithinbank, Charles (1988). Williams Jr., Richard S.; Ferrigno, Jane G. (eds.). "Glaciers of Antarctica" (PDF). Satellite Image Atlas of Glaciers of the World. U.S. Geological Survey Professional Paper (1386-B). Bibcode:1988usgs.rept...12W. doi:10.3133/pp1386B. https://pubs.usgs.gov/pp/p1386b/p1386b.pdf
Prentice, Michael L.; Kleman, Johan L.; Stroeven, Arjen P. (1998). "The Composite Glacial Erosional Landscape of the Northern Mcmurdo Dry Valleys: Implications for Antarctic Tertiary Glacial History". Ecosystem Dynamics in a Polar Desert: the Mcmurdo Dry Valleys, Antarctica. American Geophysical Union. pp. 1–38. doi:10.1029/AR072p0001. ISBN 9781118668313. 9781118668313
Andrew N. Mackintosh; Elie Verleyen; Philip E. O'Brien; Duanne A. White; R. Selwyn Jones; Robert McKay; Robert Dunbar; Damian B. Gore; David Fink; Alexandra L. Post; Hideki Miura; Amy Leventer; Ian Goodwin; Dominic A. Hodgson; Katherine Lilly; Xavier Crosta; Nicholas R. Golledge; Bernd Wagner; Sonja Berg; Tas van Ommen; Dan Zwartz; Stephen J. Roberts; Wim Vyverman; Guillaume Masse (2014). "Retreat history of the East Antarctic Ice Sheet since the Last Glacial Maximum". Quaternary Science Reviews. 100: 10–30. Bibcode:2014QSRv..100...10M. doi:10.1016/j.quascirev.2013.07.024. hdl:1854/LU-5767317. ISSN 0277-3791. /wiki/Bibcode_(identifier)
Fretwell, P.; et al. (28 February 2013). "Bedmap2: improved ice bed, surface and thickness datasets for Antarctica" (PDF). The Cryosphere. 7 (1): 390. Bibcode:2013TCry....7..375F. doi:10.5194/tc-7-375-2013. S2CID 13129041. Archived (PDF) from the original on 16 February 2020. Retrieved 6 January 2014. https://www.the-cryosphere.net/7/375/2013/tc-7-375-2013.pdf
Hale, George (19 November 2014). "East and West: The Geography of Antarctica". Operation IceBridge. National Aeronautics and Space Administration. Retrieved 31 January 2024. https://blogs.nasa.gov/icebridge/2014/11/19/east-and-west-the-geography-of-antarctica/
"Antarctic and Greenland Drainage Systems". NASA Earth Sciences. Goddard Earth Sciences Division Projects: Cryospheric Sciences. 19 January 2024. Retrieved 31 January 2024. Our definitions of the West Antarctic ice sheet (systems 18-23 and 1), the East Antarctic ice sheet (systems 2-17), and the Antarctic Peninsula (systems 24-27) allocate the drainage systems according to ice provenance with separation of East and West Antarctica approximately along the Transantarctic Mountains. https://earth.gsfc.nasa.gov/cryo/data/polar-altimetry/antarctic-and-greenland-drainage-systems
"The "Unstable" West Antarctic Ice Sheet: A Primer". NASA. 12 May 2014. Retrieved 8 July 2023. https://www.nasa.gov/jpl/news/antarctic-ice-sheet-20140512/
Singh, Hansi A.; Polvani, Lorenzo M. (10 January 2020). "Low Antarctic continental climate sensitivity due to high ice sheet orography". npj Climate and Atmospheric Science. 3 (1): 39. Bibcode:2020npCAS...3...39S. doi:10.1038/s41612-020-00143-w. S2CID 222179485. https://doi.org/10.1038%2Fs41612-020-00143-w
Sejas, Sergio A.; Taylor, Patrick C.; Cai, Ming (11 July 2018). "Unmasking the negative greenhouse effect over the Antarctic Plateau". npj Climate and Atmospheric Science. 1 (1): 17. Bibcode:2018npCAS...1...17S. doi:10.1038/s41612-018-0031-y. PMC 7580794. PMID 33102742. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7580794
Stewart, K. D.; Hogg, A. McC.; England, M. H.; Waugh, D. W. (2 November 2020). "Response of the Southern Ocean Overturning Circulation to Extreme Southern Annular Mode Conditions". Geophysical Research Letters. 47 (22): e2020GL091103. Bibcode:2020GeoRL..4791103S. doi:10.1029/2020GL091103. hdl:1885/274441. S2CID 229063736. /wiki/Bibcode_(identifier)
Singh, Hansi A.; Polvani, Lorenzo M. (10 January 2020). "Low Antarctic continental climate sensitivity due to high ice sheet orography". npj Climate and Atmospheric Science. 3 (1): 39. Bibcode:2020npCAS...3...39S. doi:10.1038/s41612-020-00143-w. S2CID 222179485. https://doi.org/10.1038%2Fs41612-020-00143-w
Singh, Hansi A.; Polvani, Lorenzo M. (10 January 2020). "Low Antarctic continental climate sensitivity due to high ice sheet orography". npj Climate and Atmospheric Science. 3 (1): 39. Bibcode:2020npCAS...3...39S. doi:10.1038/s41612-020-00143-w. S2CID 222179485. https://doi.org/10.1038%2Fs41612-020-00143-w
Sejas, Sergio A.; Taylor, Patrick C.; Cai, Ming (11 July 2018). "Unmasking the negative greenhouse effect over the Antarctic Plateau". npj Climate and Atmospheric Science. 1 (1): 17. Bibcode:2018npCAS...1...17S. doi:10.1038/s41612-018-0031-y. PMC 7580794. PMID 33102742. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7580794
Sejas, Sergio A.; Taylor, Patrick C.; Cai, Ming (11 July 2018). "Unmasking the negative greenhouse effect over the Antarctic Plateau". npj Climate and Atmospheric Science. 1 (1): 17. Bibcode:2018npCAS...1...17S. doi:10.1038/s41612-018-0031-y. PMC 7580794. PMID 33102742. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7580794
Singh, Hansi A.; Polvani, Lorenzo M. (10 January 2020). "Low Antarctic continental climate sensitivity due to high ice sheet orography". npj Climate and Atmospheric Science. 3 (1): 39. Bibcode:2020npCAS...3...39S. doi:10.1038/s41612-020-00143-w. S2CID 222179485. https://doi.org/10.1038%2Fs41612-020-00143-w
John Theodore, Houghton, ed. (2001). "Figure 9.8: Multi-model annual mean zonal temperature change (top), zonal mean temperature change range (middle) and the zonal mean change divided by the multi-model standard deviation of the mean change (bottom) for the CMIP2 simulations". Climate change 2001: the scientific basis: contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press. ISBN 978-0-521-80767-8. Archived from the original on 2016-03-30. Retrieved 2019-12-18. 978-0-521-80767-8
J. H. Christensen; B. Hewitson; A. Busuioc; A. Chen; X. Gao; I. Held; R. Jones; R.K. Kolli; W.-T. Kwon; R. Laprise; V. Magaña Rueda; L. Mearns; C. G. Menéndez; J. Räisänen; A. Rinke; A. Sarr; P. Whetton (2007). Regional Climate Projections (In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change) (PDF) (Report). Archived from the original (PDF) on 15 December 2007. Retrieved 2007-11-05. https://web.archive.org/web/20071215200933/http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter11.pdf
Chapman, William L.; Walsh, John E. (2007). "A Synthesis of Antarctic Temperatures". Journal of Climate. 20 (16): 4096–4117. Bibcode:2007JCli...20.4096C. doi:10.1175/JCLI4236.1. https://doi.org/10.1175%2FJCLI4236.1
"Impacts of climate change". Discovering Antarctica. Retrieved 15 May 2022. https://discoveringantarctica.org.uk/challenges/sustainability/impacts-of-climate-change/
Comiso, Josefino C. (2000). "Variability and Trends in Antarctic Surface Temperatures from In Situ and Satellite Infrared Measurements". Journal of Climate. 13 (10): 1674–1696. Bibcode:2000JCli...13.1674C. doi:10.1175/1520-0442(2000)013<1674:vatias>2.0.co;2. PDF available at AMS Online https://doi.org/10.1175%2F1520-0442%282000%29013%3C1674%3Avatias%3E2.0.co%3B2
Thompson, David W. J.; Solomon, Susan (2002). "Interpretation of Recent Southern Hemisphere Climate Change" (PDF). Science. 296 (5569): 895–899. Bibcode:2002Sci...296..895T. doi:10.1126/science.1069270. PMID 11988571. S2CID 7732719. Archived from the original (PDF) on 2011-08-11. Retrieved 14 August 2008. PDF available at Annular Modes Website https://web.archive.org/web/20110811141844/http://ao.atmos.colostate.edu/other_papers/ThompsonSolomon_Science2002.pdf
Doran, Peter T.; Priscu, JC; Lyons, WB; et al. (January 2002). "Antarctic climate cooling and terrestrial ecosystem response" (PDF). Nature. 415 (6871): 517–20. doi:10.1038/nature710. PMID 11793010. S2CID 387284. Archived from the original (PDF) on 11 December 2004. https://web.archive.org/web/20041211081457/http://www.uic.edu/classes/geol/eaes102/Doran.pdf
Doran, Peter T.; Priscu, JC; Lyons, WB; et al. (January 2002). "Antarctic climate cooling and terrestrial ecosystem response" (PDF). Nature. 415 (6871): 517–20. doi:10.1038/nature710. PMID 11793010. S2CID 387284. Archived from the original (PDF) on 11 December 2004. https://web.archive.org/web/20041211081457/http://www.uic.edu/classes/geol/eaes102/Doran.pdf
Peter Doran (2006-07-27). "Cold, Hard Facts". The New York Times. Archived from the original on April 11, 2009. Retrieved 2008-08-14. https://www.nytimes.com/2006/07/27/opinion/27doran.html
Chang, Kenneth (2002-04-02). "The Melting (Freezing) of Antarctica; Deciphering Contradictory Climate Patterns Is Largely a Matter of Ice". The New York Times. Retrieved 2013-04-13. https://www.nytimes.com/2002/04/02/science/melting-freezing-antarctica-deciphering-contradictory-climate-patterns-largely.html?pagewanted=all&src=pm
Peter N. Spotts (2002-01-18). "Guess what? Antarctica's getting colder, not warmer". The Christian Science Monitor. Retrieved 2013-04-13. http://www.csmonitor.com/2002/0118/p02s01-usgn.html
Bijal P. Trivedi (25 January 2002). "Antarctica Gives Mixed Signals on Warming". National Geographic. Archived from the original on January 28, 2002. Retrieved 13 April 2013. https://web.archive.org/web/20020128124959/http://news.nationalgeographic.com/news/2002/01/0125_020125_antarcticaclimate.html
Davidson, Keay (2002-02-04). "Media goofed on Antarctic data / Global warming interpretation irks scientists". San Francisco Chronicle. Retrieved 2013-04-13. http://www.sfgate.com/cgi-bin/article.cgi?f=/c/a/2002/02/04/MN159039.DTL
Eric Steig; Gavin Schmidt (2004-12-03). "Antarctic cooling, global warming?". Real Climate. Retrieved 2008-08-14. At first glance this seems to contradict the idea of 'global' warming, but one needs to be careful before jumping to this conclusion. A rise in the global mean temperature does not imply universal warming. Dynamical effects (changes in the winds and ocean circulation) can have just as large an impact, locally as the radiative forcing from greenhouse gases. The temperature change in any particular region will in fact be a combination of radiation-related changes (through greenhouse gases, aerosols, ozone and the like) and dynamical effects. Since the winds tend to only move heat from one place to another, their impact will tend to cancel out in the global mean. http://www.realclimate.org/index.php?p=18
Crichton, Michael (2004). State of Fear. HarperCollins, New York. p. 109. ISBN 978-0-06-621413-9. The data show that one relatively small area called the Antarctic Peninsula is melting and calving huge icebergs. That's what gets reported year after year. But the continent as a whole is getting colder, and the ice is getting thicker. First Edition 978-0-06-621413-9
"America Reacts To Speech Debunking Media Global Warming Alarmism". U.S. Senate Committee on Environment and Public Works. 2006-09-28. Archived from the original on 2013-03-05. Retrieved 2013-04-13. https://web.archive.org/web/20130305155142/http://epw.senate.gov/speechitem.cfm?party=rep&id=264027
Peter Doran (2006-07-27). "Cold, Hard Facts". The New York Times. Archived from the original on April 11, 2009. Retrieved 2008-08-14. https://www.nytimes.com/2006/07/27/opinion/27doran.html
"Climate Change—Our Research". British Antarctic Survey. Archived from the original on 2006-02-07. https://web.archive.org/web/20060207221259/http://www.antarctica.ac.uk/Key_Topics/Climate_Change/Climate_Change_Position.html
NASA (2007). "Two Decades of Temperature Change in Antarctica". Earth Observatory Newsroom. Archived from the original on 20 September 2008. Retrieved 2008-08-14. NASA image by Robert Simmon, based on data from Joey Comiso, GSFC. /wiki/NASA
Steig, Eric; Schneider, David; Rutherford, Scott; Mann, Michael E.; Comiso, Josefino; Shindell, Drew (1 January 2009). "Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year". Arts & Sciences Faculty Publications. https://docs.rwu.edu/fcas_fp/313
Gavin Schmidt (2004-12-03). "Antarctic cooling, global warming?". Real Climate. Retrieved 2008-08-14. At first glance this seems to contradict the idea of 'global' warming, but one needs to be careful before jumping to this conclusion. A rise in the global mean temperature does not imply universal warming. Dynamical effects (changes in the winds and ocean circulation) can have just as large an impact, locally as the radiative forcing from greenhouse gases. The temperature change in any particular region will in fact be a combination of radiation-related changes (through greenhouse gases, aerosols, ozone and the like) and dynamical effects. Since the winds tend to only move heat from one place to another, their impact will tend to cancel out in the global mean. https://www.realclimate.org/index.php/archives/2009/01/warm-reception-to-antarctic-warming-story/
Kenneth Chang (21 January 2009). "Warming in Antarctica Looks Certain". The New York Times. Archived from the original on 13 November 2014. Retrieved 13 April 2013. https://www.nytimes.com/2009/01/22/science/earth/22climate.html?ref=science
Ding, Qinghua; Eric J. Steig; David S. Battisti; Marcel Küttel (10 April 2011). "Winter warming in West Antarctica caused by central tropical Pacific warming". Nature Geoscience. 4 (6): 398–403. Bibcode:2011NatGe...4..398D. CiteSeerX 10.1.1.459.8689. doi:10.1038/ngeo1129. /wiki/Bibcode_(identifier)
A. Orsi; Bruce D. Cornuelle; J. Severinghaus (2012). "Little Ice Age cold interval in West Antarctica: Evidence from borehole temperature at the West Antarctic Ice Sheet (WAIS) Divide". Geophysical Research Letters. 39 (9): L09710. Bibcode:2012GeoRL..39.9710O. doi:10.1029/2012GL051260. https://doi.org/10.1029%2F2012GL051260
Bromwich, D. H.; Nicolas, J. P.; Monaghan, A. J.; Lazzara, M. A.; Keller, L. M.; Weidner, G. A.; Wilson, A. B. (2012). "Central West Antarctica among the most rapidly warming regions on Earth". Nature Geoscience. 6 (2): 139. Bibcode:2013NatGe...6..139B. CiteSeerX 10.1.1.394.1974. doi:10.1038/ngeo1671.Steig, Eric (23 December 2012). "The heat is on in West Antarctica". RealClimate. Retrieved 20 January 2013. /wiki/Nature_Geoscience
J P. Nicolas; J. P.; D. H. Bromwich (2014). "New reconstruction of Antarctic near-surface temperatures: Multidecadal trends and reliability of global reanalyses". Journal of Climate. 27 (21): 8070–8093. Bibcode:2014JCli...27.8070N. CiteSeerX 10.1.1.668.6627. doi:10.1175/JCLI-D-13-00733.1. S2CID 21537289. /wiki/Journal_of_Climate
McGrath, Matt (23 December 2012). "West Antarctic Ice Sheet warming twice earlier estimate". BBC News. Retrieved 16 February 2013. https://www.bbc.co.uk/news/science-environment-20804192
Ludescher, Josef; Bunde, Armin; Franzke, Christian L. E.; Schellnhuber, Hans Joachim (16 April 2015). "Long-term persistence enhances uncertainty about anthropogenic warming of Antarctica". Climate Dynamics. 46 (1–2): 263–271. Bibcode:2016ClDy...46..263L. doi:10.1007/s00382-015-2582-5. S2CID 131723421. /wiki/Bibcode_(identifier)
Dalaiden, Quentin; Schurer, Andrew P.; Kirchmeier-Young, Megan C.; Goosse, Hugues; Hegerl, Gabriele C. (24 August 2022). "West Antarctic Surface Climate Changes Since the Mid-20th Century Driven by Anthropogenic Forcing" (PDF). Geophysical Research Letters. 49 (16). Bibcode:2022GeoRL..4999543D. doi:10.1029/2022GL099543. hdl:20.500.11820/64ecd5a1-af19-43e8-9d34-da7274cc4ae0. S2CID 251854055. https://www.pure.ed.ac.uk/ws/files/293470894/Dalaidan_et_al._Accepted_Manuscript._GRL..pdf
Obryk, M. K.; Doran, P. T.; Fountain, A. G.; Myers, M.; McKay, C. P. (16 July 2020). "Climate From the McMurdo Dry Valleys, Antarctica, 1986–2017: Surface Air Temperature Trends and Redefined Summer Season". Journal of Geophysical Research: Atmospheres. 125 (13). Bibcode:2020JGRD..12532180O. doi:10.1029/2019JD032180. ISSN 2169-897X. S2CID 219738421. https://onlinelibrary.wiley.com/doi/10.1029/2019JD032180
Larson, Christina (8 February 2020). "Antarctica appears to have broken a heat record". phys.org. https://phys.org/news/2020-02-antarctica-broken.html
Xin, Meijiao; Clem, Kyle R; Turner, John; Stammerjohn, Sharon E; Zhu, Jiang; Cai, Wenju; Li, Xichen (2 June 2023). "West-warming East-cooling trend over Antarctica reversed since early 21st century driven by large-scale circulation variation". Environmental Research Letters. 18 (6): 064034. doi:10.1088/1748-9326/acd8d4. https://doi.org/10.1088%2F1748-9326%2Facd8d4
Xin, Meijiao; Li, Xichen; Stammerjohn, Sharon E; Cai, Wenju; Zhu, Jiang; Turner, John; Clem, Kyle R; Song, Chentao; Wang, Wenzhu; Hou, Yurong (17 May 2023). "A broadscale shift in antarctic temperature trends". Climate Dynamics. 61 (9–10): 4623–4641. Bibcode:2023ClDy...61.4623X. doi:10.1007/s00382-023-06825-4. S2CID 258777741. /wiki/Bibcode_(identifier)
Clem, Kyle R.; Fogt, Ryan L.; Turner, John; Lintner, Benjamin R.; Marshall, Gareth J.; Miller, James R.; Renwick, James A. (August 2020). "Record warming at the South Pole during the past three decades". Nature Climate Change. 10 (8): 762–770. Bibcode:2020NatCC..10..762C. doi:10.1038/s41558-020-0815-z. ISSN 1758-6798. S2CID 220261150. https://www.nature.com/articles/s41558-020-0815-z
Stammerjohn, Sharon E.; Scambos, Ted A. (August 2020). "Warming reaches the South Pole". Nature Climate Change. 10 (8): 710–711. Bibcode:2020NatCC..10..710S. doi:10.1038/s41558-020-0827-8. ISSN 1758-6798. S2CID 220260051. https://www.nature.com/articles/s41558-020-0827-8
Turner, John; Lu, Hua; White, Ian; King, John C.; Phillips, Tony; Hosking, J. Scott; Bracegirdle, Thomas J.; Marshall, Gareth J.; Mulvaney, Robert; Deb, Pranab (2016). "Absence of 21st century warming on Antarctic Peninsula consistent with natural variability" (PDF). Nature. 535 (7612): 411–415. Bibcode:2016Natur.535..411T. doi:10.1038/nature18645. PMID 27443743. S2CID 205249862. http://nora.nerc.ac.uk/id/eprint/514089/1/Turner%20Nature%20with%20figures.pdf
Steig, Eric J. (2016). "Cooling in the Antarctic". Nature. 535 (7612): 358–359. doi:10.1038/535358a. PMID 27443735. https://doi.org/10.1038%2F535358a
Trenberth, Kevin E.; Fasullo, John T.; Branstator, Grant; Phillips, Adam S. (2014). "Seasonal aspects of the recent pause in surface warming". Nature Climate Change. 4 (10): 911–916. Bibcode:2014NatCC...4..911T. doi:10.1038/NCLIMATE2341. https://zenodo.org/record/1233365
Chang, Kenneth (2002-05-03). "Ozone Hole Is Now Seen as a Cause for Antarctic Cooling". The New York Times. Retrieved 2013-04-13. https://www.nytimes.com/2002/05/03/us/ozone-hole-is-now-seen-as-a-cause-for-antarctic-cooling.html
Shindell, Drew T.; Schmidt, Gavin A. (2004). "Southern Hemisphere climate response to ozone changes and greenhouse gas increases". Geophys. Res. Lett. 31 (18): L18209. Bibcode:2004GeoRL..3118209S. doi:10.1029/2004GL020724. https://doi.org/10.1029%2F2004GL020724
Thompson, David W. J.; Solomon, Susan; Kushner, Paul J.; England, Matthew H.; Grise, Kevin M.; Karoly, David J. (23 October 2011). "Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change". Nature Geoscience. 4 (11): 741–749. Bibcode:2011NatGe...4..741T. doi:10.1038/ngeo1296. S2CID 40243634. /wiki/Nature_Geoscience
Meredith, M.; Sommerkorn, M.; Cassotta, S; Derksen, C.; et al. (2019). "Chapter 3: Polar Regions" (PDF). IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. p. 212. https://www.ipcc.ch/site/assets/uploads/sites/3/2019/11/07_SROCC_Ch03_FINAL.pdf
Rintoul, S. R.; Chown, S. L.; DeConto, R. M.; England, M. H.; Fricker, H. A.; Masson-Delmotte, V.; Naish, T. R.; Siegert, M. J.; Xavier, J. C. (13 June 2018). "Choosing the future of Antarctica". Nature. 558 (7709): 233–241. Bibcode:2018Natur.558..233R. doi:10.1038/s41586-018-0173-4. PMID 29899481. https://par.nsf.gov/servlets/purl/10066642
Hughes, Kevin A.; Convey, Peter; Turner, John (1 October 2021). "Developing resilience to climate change impacts in Antarctica: An evaluation of Antarctic Treaty System protected area policy". Environmental Science & Policy. 124: 12–22. Bibcode:2021ESPol.124...12H. doi:10.1016/j.envsci.2021.05.023. ISSN 1462-9011. S2CID 236282417. https://doi.org/10.1016%2Fj.envsci.2021.05.023
Rintoul, S. R.; Chown, S. L.; DeConto, R. M.; England, M. H.; Fricker, H. A.; Masson-Delmotte, V.; Naish, T. R.; Siegert, M. J.; Xavier, J. C. (13 June 2018). "Choosing the future of Antarctica". Nature. 558 (7709): 233–241. Bibcode:2018Natur.558..233R. doi:10.1038/s41586-018-0173-4. PMID 29899481. https://par.nsf.gov/servlets/purl/10066642
Hausfather, Zeke; Peters, Glen (29 January 2020). "Emissions – the 'business as usual' story is misleading". Nature. 577 (7792): 618–20. Bibcode:2020Natur.577..618H. doi:10.1038/d41586-020-00177-3. PMID 31996825. https://doi.org/10.1038%2Fd41586-020-00177-3
Schuur, Edward A.G.; Abbott, Benjamin W.; Commane, Roisin; Ernakovich, Jessica; Euskirchen, Eugenie; Hugelius, Gustaf; Grosse, Guido; Jones, Miriam; Koven, Charlie; Leshyk, Victor; Lawrence, David; Loranty, Michael M.; Mauritz, Marguerite; Olefeldt, David; Natali, Susan; Rodenhizer, Heidi; Salmon, Verity; Schädel, Christina; Strauss, Jens; Treat, Claire; Turetsky, Merritt (2022). "Permafrost and Climate Change: Carbon Cycle Feedbacks From the Warming Arctic". Annual Review of Environment and Resources. 47: 343–371. Bibcode:2022ARER...47..343S. doi:10.1146/annurev-environ-012220-011847. Medium-range estimates of Arctic carbon emissions could result from moderate climate emission mitigation policies that keep global warming below 3 °C (e.g., RCP4.5). This global warming level most closely matches country emissions reduction pledges made for the Paris Climate Agreement... https://doi.org/10.1146%2Fannurev-environ-012220-011847
Phiddian, Ellen (5 April 2022). "Explainer: IPCC Scenarios". Cosmos. Retrieved 30 September 2023. The IPCC doesn't make projections about which of these scenarios is more likely, but other researchers and modellers can. The Australian Academy of Science, for instance, released a report last year stating that our current emissions trajectory had us headed for a 3 °C warmer world, roughly in line with the middle scenario. Climate Action Tracker predicts 2.5 to 2.9 °C of warming based on current policies and action, with pledges and government agreements taking this to 2.13 °C. https://cosmosmagazine.com/earth/climate/explainer-ipcc-scenarios/
Rintoul, S. R.; Chown, S. L.; DeConto, R. M.; England, M. H.; Fricker, H. A.; Masson-Delmotte, V.; Naish, T. R.; Siegert, M. J.; Xavier, J. C. (13 June 2018). "Choosing the future of Antarctica". Nature. 558 (7709): 233–241. Bibcode:2018Natur.558..233R. doi:10.1038/s41586-018-0173-4. PMID 29899481. https://par.nsf.gov/servlets/purl/10066642
King, M. A.; Bingham, R. J.; Moore, P.; Whitehouse, P. L.; Bentley, M. J.; Milne, G. A. (2012). "Lower satellite-gravimetry estimates of Antarctic sea-level contribution". Nature. 491 (7425): 586–589. Bibcode:2012Natur.491..586K. doi:10.1038/nature11621. PMID 23086145. S2CID 4414976. https://durham-repository.worktribe.com/output/1492905
IMBIE team (13 June 2018). "Mass balance of the Antarctic Ice Sheet from 1992 to 2017". Nature. 558 (7709): 219–222. Bibcode:2018Natur.558..219I. doi:10.1038/s41586-018-0179-y. hdl:2268/225208. PMID 29899482. S2CID 49188002. /wiki/Bibcode_(identifier)
IMBIE team (13 June 2018). "Mass balance of the Antarctic Ice Sheet from 1992 to 2017". Nature. 558 (7709): 219–222. Bibcode:2018Natur.558..219I. doi:10.1038/s41586-018-0179-y. hdl:2268/225208. PMID 29899482. S2CID 49188002. /wiki/Bibcode_(identifier)
Zwally, H. Jay; Robbins, John W.; Luthcke, Scott B.; Loomis, Bryant D.; Rémy, Frédérique (29 March 2021). "Mass balance of the Antarctic ice sheet 1992–2016: reconciling results from GRACE gravimetry with ICESat, ERS1/2 and Envisat altimetry". Journal of Glaciology. 67 (263): 533–559. Bibcode:2021JGlac..67..533Z. doi:10.1017/jog.2021.8. Although their methods of interpolation or extrapolation for areas with unobserved output velocities have an insufficient description for the evaluation of associated errors, such errors in previous results (Rignot and others, 2008) caused large overestimates of the mass losses as detailed in Zwally and Giovinetto (Zwally and Giovinetto, 2011). https://doi.org/10.1017%2Fjog.2021.8
Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; Mix, A. (2021). Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L. (eds.). "Chapter 9: Ocean, Cryosphere and Sea Level Change" (PDF). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA: 1270–1272. /wiki/Helene_Hewitt
Andreasen, Julia R.; Hogg, Anna E.; Selley, Heather L. (2023-05-16). "Change in Antarctic ice shelf area from 2009 to 2019". The Cryosphere. 17 (5): 2059–2072. Bibcode:2023TCry...17.2059A. doi:10.5194/tc-17-2059-2023. ISSN 1994-0424. https://tc.copernicus.org/articles/17/2059/2023/
Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; Mix, A. (2021). Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L. (eds.). "Chapter 9: Ocean, Cryosphere and Sea Level Change" (PDF). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA: 1270–1272. /wiki/Helene_Hewitt
Robel, Alexander A.; Seroussi, Hélène; Roe, Gerard H. (23 July 2019). "Marine ice sheet instability amplifies and skews uncertainty in projections of future sea-level rise". Proceedings of the National Academy of Sciences. 116 (30): 14887–14892. Bibcode:2019PNAS..11614887R. doi:10.1073/pnas.1904822116. PMC 6660720. PMID 31285345. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6660720
Perkins, Sid (June 17, 2021). "Collapse may not always be inevitable for marine ice cliffs". Science News. Retrieved 9 January 2023. https://www.sciencenews.org/article/climate-marine-ice-cliffs-sheets-collapse-not-inevitable-sea-level
Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; Mix, A. (2021). Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L. (eds.). "Chapter 9: Ocean, Cryosphere and Sea Level Change" (PDF). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA: 1270–1272. /wiki/Helene_Hewitt
Nauels, Alexander; Rogelj, Joeri; Schleussner, Carl-Friedrich; Meinshausen, Malte; Mengel, Matthias (1 November 2017). "Linking sea level rise and socioeconomic indicators under the Shared Socioeconomic Pathways". Environmental Research Letters. 12 (11): 114002. Bibcode:2017ERL....12k4002N. doi:10.1088/1748-9326/aa92b6. hdl:20.500.11850/230713. /wiki/Joeri_Rogelj
L. Bamber, Jonathan; Oppenheimer, Michael; E. Kopp, Robert; P. Aspinall, Willy; M. Cooke, Roger (May 2019). "Ice sheet contributions to future sea-level rise from structured expert judgment". Proceedings of the National Academy of Sciences. 116 (23): 11195–11200. Bibcode:2019PNAS..11611195B. doi:10.1073/pnas.1817205116. PMC 6561295. PMID 31110015. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6561295
Horton, Benjamin P.; Khan, Nicole S.; Cahill, Niamh; Lee, Janice S. H.; Shaw, Timothy A.; Garner, Andra J.; Kemp, Andrew C.; Engelhart, Simon E.; Rahmstorf, Stefan (8 May 2020). "Estimating global mean sea-level rise and its uncertainties by 2100 and 2300 from an expert survey". npj Climate and Atmospheric Science. 3 (1): 18. Bibcode:2020npCAS...3...18H. doi:10.1038/s41612-020-0121-5. hdl:10356/143900. S2CID 218541055. /wiki/Bibcode_(identifier)
DeConto, Robert M.; Pollard, David; Alley, Richard B.; Velicogna, Isabella; Gasson, Edward; Gomez, Natalya; Sadai, Shaina; Condron, Alan; Gilford, Daniel M.; Ashe, Erica L.; Kopp, Robert E. (May 2021). "The Paris Climate Agreement and future sea-level rise from Antarctica". Nature. 593 (7857): 83–89. Bibcode:2021Natur.593...83D. doi:10.1038/s41586-021-03427-0. hdl:10871/125843. ISSN 1476-4687. PMID 33953408. S2CID 233868268. https://www.nature.com/articles/s41586-021-03427-0
Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; Mix, A. (2021). "Ocean, Cryosphere and Sea Level Change". In Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L. (eds.). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I. Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Vol. 2021. Cambridge University Press. pp. 1239–1241. doi:10.1017/9781009157896.011. ISBN 9781009157896. 9781009157896
Pan, Xianliang L.; Li, Bofeng F.; Watanabe, Yutaka W. (10 January 2022). "Intense ocean freshening from melting glacier around the Antarctica during early twenty-first century". Scientific Reports. 12 (1): 383. Bibcode:2022NatSR..12..383P. doi:10.1038/s41598-021-04231-6. ISSN 2045-2322. PMC 8748732. PMID 35013425. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8748732
Haumann, F. Alexander; Gruber, Nicolas; Münnich, Matthias; Frenger, Ivy; Kern, Stefan (September 2016). "Sea-ice transport driving Southern Ocean salinity and its recent trends". Nature. 537 (7618): 89–92. Bibcode:2016Natur.537...89H. doi:10.1038/nature19101. hdl:20.500.11850/120143. ISSN 1476-4687. PMID 27582222. S2CID 205250191. https://www.nature.com/articles/nature19101
Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; Mix, A. (2021). "Ocean, Cryosphere and Sea Level Change". In Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L. (eds.). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I. Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Vol. 2021. Cambridge University Press. pp. 1239–1241. doi:10.1017/9781009157896.011. ISBN 9781009157896. 9781009157896
Li, Qian; England, Matthew H.; Hogg, Andrew McC.; Rintoul, Stephen R.; Morrison, Adele K. (29 March 2023). "Abyssal ocean overturning slowdown and warming driven by Antarctic meltwater". Nature. 615 (7954): 841–847. Bibcode:2023Natur.615..841L. doi:10.1038/s41586-023-05762-w. PMID 36991191. S2CID 257807573. /wiki/Bibcode_(identifier)
Shi, Jia-Rui; Talley, Lynne D.; Xie, Shang-Ping; Peng, Qihua; Liu, Wei (2021-11-29). "Ocean warming and accelerating Southern Ocean zonal flow". Nature Climate Change. 11 (12). Springer Science and Business Media LLC: 1090–1097. Bibcode:2021NatCC..11.1090S. doi:10.1038/s41558-021-01212-5. ISSN 1758-678X. S2CID 244726388. /wiki/Bibcode_(identifier)
Silvano, Alessandro; Rintoul, Stephen Rich; Peña-Molino, Beatriz; Hobbs, William Richard; van Wijk, Esmee; Aoki, Shigeru; Tamura, Takeshi; Williams, Guy Darvall (18 April 2018). "Freshening by glacial meltwater enhances the melting of ice shelves and reduces the formation of Antarctic Bottom Water". Science Advances. 4 (4): eaap9467. doi:10.1126/sciadv.aap9467. PMC 5906079. PMID 29675467. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5906079
Ribeiro, N.; Herraiz-Borreguero, L.; Rintoul, S. R.; McMahon, C. R.; Hindell, M.; Harcourt, R.; Williams, G. (15 July 2021). "Warm Modified Circumpolar Deep Water Intrusions Drive Ice Shelf Melt and Inhibit Dense Shelf Water Formation in Vincennes Bay, East Antarctica". Journal of Geophysical Research: Oceans. 126 (8). Bibcode:2021JGRC..12616998R. doi:10.1029/2020JC016998. ISSN 2169-9275. S2CID 237695196. /wiki/Bibcode_(identifier)
Aoki, S.; Yamazaki, K.; Hirano, D.; Katsumata, K.; Shimada, K.; Kitade, Y.; Sasaki, H.; Murase, H. (15 September 2020). "Reversal of freshening trend of Antarctic Bottom Water in the Australian-Antarctic Basin during 2010s". Scientific Reports. 10 (1): 14415. doi:10.1038/s41598-020-71290-6. PMC 7492216. PMID 32934273. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7492216
Gunn, Kathryn L.; Rintoul, Stephen R.; England, Matthew H.; Bowen, Melissa M. (25 May 2023). "Recent reduced abyssal overturning and ventilation in the Australian Antarctic Basin". Nature Climate Change. 13 (6): 537–544. Bibcode:2023NatCC..13..537G. doi:10.1038/s41558-023-01667-8. ISSN 1758-6798. https://doi.org/10.1038%2Fs41558-023-01667-8
Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; Mix, A. (2021). "Ocean, Cryosphere and Sea Level Change". In Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L. (eds.). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I. Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Vol. 2021. Cambridge University Press. pp. 1239–1241. doi:10.1017/9781009157896.011. ISBN 9781009157896. 9781009157896
Lee, Sang-Ki; Lumpkin, Rick; Gomez, Fabian; Yeager, Stephen; Lopez, Hosmay; Takglis, Filippos; Dong, Shenfu; Aguiar, Wilton; Kim, Dongmin; Baringer, Molly (13 March 2023). "Human-induced changes in the global meridional overturning circulation are emerging from the Southern Ocean". Communications Earth & Environment. 4 (1): 69. Bibcode:2023ComEE...4...69L. doi:10.1038/s43247-023-00727-3. https://doi.org/10.1038%2Fs43247-023-00727-3
"NOAA Scientists Detect a Reshaping of the Meridional Overturning Circulation in the Southern Ocean". NOAA. 29 March 2023. https://www.aoml.noaa.gov/noaa-scientists-detect-reshaping-of-the-meridional-overturning-circulation-in-southern-ocean/
Zhou, Shenjie; Meijers, Andrew J. S.; Meredith, Michael P.; Abrahamsen, E. Povl; Holland, Paul R.; Silvano, Alessandro; Sallée, Jean-Baptiste; Østerhus, Svein (12 June 2023). "Slowdown of Antarctic Bottom Water export driven by climatic wind and sea-ice changes". Nature Climate Change. 13 (6): 701–709. Bibcode:2023NatCC..13..537G. doi:10.1038/s41558-023-01667-8. https://doi.org/10.1038%2Fs41558-023-01667-8
Silvano, Alessandro; Meijers, Andrew J. S.; Zhou, Shenjie (17 June 2023). "Slowing deep Southern Ocean current may be linked to natural climate cycle—but melting Antarctic ice is still a concern". The Conversation. https://theconversation.com/slowing-deep-southern-ocean-current-may-be-linked-to-natural-climate-cycle-but-thats-no-reason-to-stop-worrying-about-melting-antarctic-ice-205341
Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; Mix, A. (2021). "Ocean, Cryosphere and Sea Level Change". In Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L. (eds.). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I. Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Vol. 2021. Cambridge University Press. pp. 1239–1241. doi:10.1017/9781009157896.011. ISBN 9781009157896. 9781009157896
Bourgeois, Timothée; Goris, Nadine; Schwinger, Jörg; Tjiputra, Jerry F. (17 January 2022). "Stratification constrains future heat and carbon uptake in the Southern Ocean between 30°S and 55°S". Nature Communications. 13 (1): 340. Bibcode:2022NatCo..13..340B. doi:10.1038/s41467-022-27979-5. PMC 8764023. PMID 35039511. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8764023
Li, Qian; England, Matthew H.; Hogg, Andrew McC.; Rintoul, Stephen R.; Morrison, Adele K. (29 March 2023). "Abyssal ocean overturning slowdown and warming driven by Antarctic meltwater". Nature. 615 (7954): 841–847. Bibcode:2023Natur.615..841L. doi:10.1038/s41586-023-05762-w. PMID 36991191. S2CID 257807573. /wiki/Bibcode_(identifier)
Logan, Tyne (29 March 2023). "Landmark study projects 'dramatic' changes to Southern Ocean by 2050". ABC News. https://www.abc.net.au/news/2023-03-30/dramatic-south-ocean-circulation-changes-study/102154690
Bakker, P; Schmittner, A; Lenaerts, JT; Abe-Ouchi, A; Bi, D; van den Broeke, MR; Chan, WL; Hu, A; Beadling, RL; Marsland, SJ; Mernild, SH; Saenko, OA; Swingedouw, D; Sullivan, A; Yin, J (11 November 2016). "Fate of the Atlantic Meridional Overturning Circulation: Strong decline under continued warming and Greenland melting". Geophysical Research Letters. 43 (23): 12, 252–12, 260. Bibcode:2016GeoRL..4312252B. doi:10.1002/2016GL070457. hdl:10150/622754. S2CID 133069692. /wiki/Bibcode_(identifier)
Lenton, T. M.; Armstrong McKay, D.I.; Loriani, S.; Abrams, J.F.; Lade, S.J.; Donges, J.F.; Milkoreit, M.; Powell, T.; Smith, S.R.; Zimm, C.; Buxton, J.E.; Daube, Bruce C.; Krummel, Paul B.; Loh, Zoë; Luijkx, Ingrid T. (2023). The Global Tipping Points Report 2023 (Report). University of Exeter. https://global-tipping-points.org/download/4608/
Liu, Y.; Moore, J. K.; Primeau, F.; Wang, W. L. (22 December 2022). "Reduced CO2 uptake and growing nutrient sequestration from slowing overturning circulation". Nature Climate Change. 13: 83–90. doi:10.1038/s41558-022-01555-7. OSTI 2242376. S2CID 255028552. /wiki/Doi_(identifier)
Logan, Tyne (29 March 2023). "Landmark study projects 'dramatic' changes to Southern Ocean by 2050". ABC News. https://www.abc.net.au/news/2023-03-30/dramatic-south-ocean-circulation-changes-study/102154690
Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; Mix, A. (2021). Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L. (eds.). "Chapter 9: Ocean, Cryosphere and Sea Level Change" (PDF). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA: 1270–1272. /wiki/Helene_Hewitt
Fretwell, P.; et al. (28 February 2013). "Bedmap2: improved ice bed, surface and thickness datasets for Antarctica" (PDF). The Cryosphere. 7 (1): 390. Bibcode:2013TCry....7..375F. doi:10.5194/tc-7-375-2013. S2CID 13129041. Archived (PDF) from the original on 16 February 2020. Retrieved 6 January 2014. https://www.the-cryosphere.net/7/375/2013/tc-7-375-2013.pdf
Bamber, J.L.; Riva, R.E.M.; Vermeersen, B.L.A.; LeBrocq, A.M. (14 May 2009). "Reassessment of the Potential Sea-Level Rise from a Collapse of the West Antarctic Ice Sheet". Science. 324 (5929): 901–903. Bibcode:2009Sci...324..901B. doi:10.1126/science.1169335. PMID 19443778. S2CID 11083712. https://durham-repository.worktribe.com/output/1559100
Voosen, Paul (18 December 2018). "Discovery of recent Antarctic ice sheet collapse raises fears of a new global flood". Science. Retrieved 28 December 2018. https://www.science.org/content/article/discovery-recent-antarctic-ice-sheet-collapse-raises-fears-new-global-flood
Turney, Chris S. M.; Fogwill, Christopher J.; Golledge, Nicholas R.; McKay, Nicholas P.; Sebille, Erik van; Jones, Richard T.; Etheridge, David; Rubino, Mauro; Thornton, David P.; Davies, Siwan M.; Ramsey, Christopher Bronk (2020-02-11). "Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica". Proceedings of the National Academy of Sciences. 117 (8): 3996–4006. Bibcode:2020PNAS..117.3996T. doi:10.1073/pnas.1902469117. ISSN 0027-8424. PMC 7049167. PMID 32047039. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7049167
Lau, Sally C. Y.; Wilson, Nerida G.; Golledge, Nicholas R.; Naish, Tim R.; Watts, Phillip C.; Silva, Catarina N. S.; Cooke, Ira R.; Allcock, A. Louise; Mark, Felix C.; Linse, Katrin (21 December 2023). "Genomic evidence for West Antarctic Ice Sheet collapse during the Last Interglacial" (PDF). Science. 382 (6677): 1384–1389. Bibcode:2023Sci...382.1384L. doi:10.1126/science.ade0664. PMID 38127761. S2CID 266436146. https://epic.awi.de/id/eprint/58369/1/science.ade0664%281%29.pdf
A. Naughten, Kaitlin; R. Holland, Paul; De Rydt, Jan (23 October 2023). "Unavoidable future increase in West Antarctic ice-shelf melting over the twenty-first century". Nature Climate Change. 13 (11): 1222–1228. Bibcode:2023NatCC..13.1222N. doi:10.1038/s41558-023-01818-x. S2CID 264476246. https://doi.org/10.1038%2Fs41558-023-01818-x
Poynting, Mark (24 October 2023). "Sea-level rise: West Antarctic ice shelf melt 'unavoidable'". BBC News. Retrieved 26 October 2023. https://www.bbc.com/news/science-environment-67171231
Garbe, Julius; Albrecht, Torsten; Levermann, Anders; Donges, Jonathan F.; Winkelmann, Ricarda (2020). "The hysteresis of the Antarctic Ice Sheet". Nature. 585 (7826): 538–544. Bibcode:2020Natur.585..538G. doi:10.1038/s41586-020-2727-5. PMID 32968257. S2CID 221885420. https://publications.pik-potsdam.de/pubman/item/item_24368
Wolovick, Michael; Moore, John; Keefer, Bowie (27 March 2023). "Feasibility of ice sheet conservation using seabed anchored curtains". PNAS Nexus. 2 (3): pgad053. doi:10.1093/pnasnexus/pgad053. PMC 10062297. PMID 37007716. https://academic.oup.com/pnasnexus/article/2/4/pgad103/7087219
Wolovick, Michael; Moore, John; Keefer, Bowie (27 March 2023). "The potential for stabilizing Amundsen Sea glaciers via underwater curtains". PNAS Nexus. 2 (4): pgad103. doi:10.1093/pnasnexus/pgad103. PMC 10118300. PMID 37091546. https://academic.oup.com/pnasnexus/article/2/4/pgad103/7087219
Armstrong McKay, David; Abrams, Jesse; Winkelmann, Ricarda; Sakschewski, Boris; Loriani, Sina; Fetzer, Ingo; Cornell, Sarah; Rockström, Johan; Staal, Arie; Lenton, Timothy (9 September 2022). "Exceeding 1.5 °C global warming could trigger multiple climate tipping points". Science. 377 (6611): eabn7950. doi:10.1126/science.abn7950. hdl:10871/131584. ISSN 0036-8075. PMID 36074831. S2CID 252161375. https://www.science.org/doi/10.1126/science.abn7950
Armstrong McKay, David (9 September 2022). "Exceeding 1.5 °C global warming could trigger multiple climate tipping points – paper explainer". climatetippingpoints.info. Retrieved 2 October 2022. https://climatetippingpoints.info/2022/09/09/climate-tipping-points-reassessment-explainer/
Pan, Linda; Powell, Evelyn M.; Latychev, Konstantin; Mitrovica, Jerry X.; Creveling, Jessica R.; Gomez, Natalya; Hoggard, Mark J.; Clark, Peter U. (30 April 2021). "Rapid postglacial rebound amplifies global sea level rise following West Antarctic Ice Sheet collapse". Science Advances. 7 (18). Bibcode:2021SciA....7.7787P. doi:10.1126/sciadv.abf7787. PMC 8087405. PMID 33931453. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8087405
Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; Mix, A. (2021). Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L. (eds.). "Chapter 9: Ocean, Cryosphere and Sea Level Change" (PDF). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA: 1270–1272. /wiki/Helene_Hewitt
Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; Mix, A. (2021). Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L. (eds.). "Chapter 9: Ocean, Cryosphere and Sea Level Change" (PDF). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA: 1270–1272. /wiki/Helene_Hewitt
Armstrong McKay, David; Abrams, Jesse; Winkelmann, Ricarda; Sakschewski, Boris; Loriani, Sina; Fetzer, Ingo; Cornell, Sarah; Rockström, Johan; Staal, Arie; Lenton, Timothy (9 September 2022). "Exceeding 1.5°C global warming could trigger multiple climate tipping points". Science. 377 (6611). doi:10.1126/science.abn7950. hdl:10871/131584. ISSN 0036-8075. S2CID 252161375. https://www.science.org/doi/10.1126/science.abn7950
Crotti, Ilaria; Quiquet, Aurélien; Landais, Amaelle; Stenni, Barbara; Wilson, David J.; Severi, Mirko; Mulvaney, Robert; Wilhelms, Frank; Barbante, Carlo; Frezzotti, Massimo (10 September 2022). "Wilkes subglacial basin ice sheet response to Southern Ocean warming during late Pleistocene interglacials". Nature Communications. 13: 5328. doi:10.1038/s41467-022-32847-3. hdl:10278/5003813. /wiki/Doi_(identifier)
Armstrong McKay, David; Abrams, Jesse; Winkelmann, Ricarda; Sakschewski, Boris; Loriani, Sina; Fetzer, Ingo; Cornell, Sarah; Rockström, Johan; Staal, Arie; Lenton, Timothy (9 September 2022). "Exceeding 1.5°C global warming could trigger multiple climate tipping points". Science. 377 (6611). doi:10.1126/science.abn7950. hdl:10871/131584. ISSN 0036-8075. S2CID 252161375. https://www.science.org/doi/10.1126/science.abn7950
Armstrong McKay, David (9 September 2022). "Exceeding 1.5°C global warming could trigger multiple climate tipping points – paper explainer". climatetippingpoints.info. Retrieved 2 October 2022. https://climatetippingpoints.info/2022/09/09/climate-tipping-points-reassessment-explainer/
Armstrong McKay, David; Abrams, Jesse; Winkelmann, Ricarda; Sakschewski, Boris; Loriani, Sina; Fetzer, Ingo; Cornell, Sarah; Rockström, Johan; Staal, Arie; Lenton, Timothy (9 September 2022). "Exceeding 1.5°C global warming could trigger multiple climate tipping points". Science. 377 (6611). doi:10.1126/science.abn7950. hdl:10871/131584. ISSN 0036-8075. S2CID 252161375. https://www.science.org/doi/10.1126/science.abn7950
Armstrong McKay, David (9 September 2022). "Exceeding 1.5°C global warming could trigger multiple climate tipping points – paper explainer". climatetippingpoints.info. Retrieved 2 October 2022. https://climatetippingpoints.info/2022/09/09/climate-tipping-points-reassessment-explainer/
Pan, Linda; Powell, Evelyn M.; Latychev, Konstantin; Mitrovica, Jerry X.; Creveling, Jessica R.; Gomez, Natalya; Hoggard, Mark J.; Clark, Peter U. (30 April 2021). "Rapid postglacial rebound amplifies global sea level rise following West Antarctic Ice Sheet collapse". Science Advances. 7 (18). doi:10.1126/sciadv.abf7787. /wiki/Doi_(identifier)
Fretwell, P.; Pritchard, H. D.; Vaughan, D. G.; Bamber, J. L.; Barrand, N. E.; Bell, R.; Bianchi, C.; Bingham, R. G.; Blankenship, D. D. (2013-02-28). "Bedmap2: improved ice bed, surface and thickness datasets for Antarctica". The Cryosphere. 7 (1): 375–393. Bibcode:2013TCry....7..375F. doi:10.5194/tc-7-375-2013. hdl:1808/18763. ISSN 1994-0424. https://doi.org/10.5194%2Ftc-7-375-2013
Armstrong McKay, David; Abrams, Jesse; Winkelmann, Ricarda; Sakschewski, Boris; Loriani, Sina; Fetzer, Ingo; Cornell, Sarah; Rockström, Johan; Staal, Arie; Lenton, Timothy (9 September 2022). "Exceeding 1.5°C global warming could trigger multiple climate tipping points". Science. 377 (6611). doi:10.1126/science.abn7950. hdl:10871/131584. ISSN 0036-8075. S2CID 252161375. https://www.science.org/doi/10.1126/science.abn7950
Armstrong McKay, David (9 September 2022). "Exceeding 1.5°C global warming could trigger multiple climate tipping points – paper explainer". climatetippingpoints.info. Retrieved 2 October 2022. https://climatetippingpoints.info/2022/09/09/climate-tipping-points-reassessment-explainer/
Garbe, Julius; Albrecht, Torsten; Levermann, Anders; Donges, Jonathan F.; Winkelmann, Ricarda (2020). "The hysteresis of the Antarctic Ice Sheet". Nature. 585 (7826): 538–544. Bibcode:2020Natur.585..538G. doi:10.1038/s41586-020-2727-5. PMID 32968257. S2CID 221885420. https://www.nature.com/articles/s41586-020-2727-5
Armstrong McKay, David; Abrams, Jesse; Winkelmann, Ricarda; Sakschewski, Boris; Loriani, Sina; Fetzer, Ingo; Cornell, Sarah; Rockström, Johan; Staal, Arie; Lenton, Timothy (9 September 2022). "Exceeding 1.5°C global warming could trigger multiple climate tipping points". Science. 377 (6611). doi:10.1126/science.abn7950. hdl:10871/131584. ISSN 0036-8075. S2CID 252161375. https://www.science.org/doi/10.1126/science.abn7950
Armstrong McKay, David (9 September 2022). "Exceeding 1.5°C global warming could trigger multiple climate tipping points – paper explainer". climatetippingpoints.info. Retrieved 2 October 2022. https://climatetippingpoints.info/2022/09/09/climate-tipping-points-reassessment-explainer/
Barr, Iestyn D.; Spagnolo, Matteo; Rea, Brice R.; Bingham, Robert G.; Oien, Rachel P.; Adamson, Kathryn; Ely, Jeremy C.; Mullan, Donal J.; Pellitero, Ramón; Tomkins, Matt D. (21 September 2022). "60 million years of glaciation in the Transantarctic Mountains". Nature Communications. 13 (1): 5526. Bibcode:2022NatCo..13.5526B. doi:10.1038/s41467-022-33310-z. hdl:2164/19437. ISSN 2041-1723. PMC 9492669. PMID 36130952. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9492669
Sedimentological evidence for the formation of an East Antarctic ice sheet in Eocene/Oligocene time Archived 2012-06-16 at the Wayback Machine Palaeogeography, palaeoclimatology, & palaeoecology ISSN 0031-0182, 1992, vol. 93, no1-2, pp. 85–112 (3 p.) http://cat.inist.fr/?aModele=afficheN&cpsidt=5254620
"New CO2 data helps unlock the secrets of Antarctic formation". phys.org. September 13, 2009. Retrieved 2023-06-06. https://phys.org/news/2009-09-co2-secrets-antarctic-formation.html
Pagani, M.; Huber, M.; Liu, Z.; Bohaty, S. M.; Henderiks, J.; Sijp, W.; Krishnan, S.; Deconto, R. M. (2011). "Drop in carbon dioxide levels led to polar ice sheet, study finds". Science. 334 (6060): 1261–1264. Bibcode:2011Sci...334.1261P. doi:10.1126/science.1203909. PMID 22144622. S2CID 206533232. Retrieved 2014-01-28. https://www.sciencedaily.com/releases/2011/12/111201174225.htm
Coxall, Helen K. (2005). "Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean". Nature. 433 (7021): 53–57. Bibcode:2005Natur.433...53C. doi:10.1038/nature03135. PMID 15635407. S2CID 830008. /wiki/Bibcode_(identifier)
Diester-Haass, Liselotte; Zahn, Rainer (1996). "Eocene-Oligocene transition in the Southern Ocean: History of water mass circulation and biological productivity". Geology. 24 (2): 163. Bibcode:1996Geo....24..163D. doi:10.1130/0091-7613(1996)024<0163:EOTITS>2.3.CO;2. /wiki/Bibcode_(identifier)
DeConto, Robert M. (2003). "Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2" (PDF). Nature. 421 (6920): 245–249. Bibcode:2003Natur.421..245D. doi:10.1038/nature01290. PMID 12529638. S2CID 4326971. http://doc.rero.ch/record/16546/files/PAL_E3220.pdf
Naish, Timothy; et al. (2009). "Obliquity-paced Pliocene West Antarctic ice sheet oscillations". Nature. 458 (7236): 322–328. Bibcode:2009Natur.458..322N. doi:10.1038/nature07867. PMID 19295607. S2CID 15213187. https://digitalcommons.unl.edu/cgi/viewcontent.cgi?httpsredir=1&article=1186&context=geosciencefacpub
Shakun, Jeremy D.; et al. (2018). "Minimal East Antarctic Ice Sheet retreat onto land during the past eight million years". Nature. 558 (7709): 284–287. Bibcode:2018Natur.558..284S. doi:10.1038/s41586-018-0155-6. OSTI 1905199. PMID 29899483. S2CID 49185845. https://www.osti.gov/biblio/1905199