Menu
Home
People
Places
Arts
History
Plants & Animals
Science
Life & Culture
Technology
Reference.org
Quasi-polynomial
open-in-new
Examples
Given a d {\displaystyle d} -dimensional
polytope
P {\displaystyle P} with
rational
vertices v 1 , … , v n {\displaystyle v_{1},\dots ,v_{n}} , define t P {\displaystyle tP} to be the
convex hull
of t v 1 , … , t v n {\displaystyle tv_{1},\dots ,tv_{n}} . The function L ( P , t ) = # ( t P ∩ Z d ) {\displaystyle L(P,t)=\#(tP\cap \mathbb {Z} ^{d})} is a quasi-polynomial in t {\displaystyle t} of degree d {\displaystyle d} . In this case, L ( P , t ) {\displaystyle L(P,t)} is a function N → N {\displaystyle \mathbb {N} \to \mathbb {N} } . This is known as the
Ehrhart quasi-polynomial
, named after
Eugène Ehrhart
.
Given two quasi-polynomials F {\displaystyle F} and G {\displaystyle G} , the
convolution
of F {\displaystyle F} and G {\displaystyle G} is
( F ∗ G ) ( k ) = ∑ m = 0 k F ( m ) G ( k − m ) {\displaystyle (F*G)(k)=\sum _{m=0}^{k}F(m)G(k-m)} which is a quasi-polynomial with degree ≤ deg F + deg G + 1. {\displaystyle \leq \deg F+\deg G+1.}
Stanley, Richard P.
(1997).
Enumerative Combinatorics
, Volume 1
. Cambridge University Press.
ISBN
0-521-55309-1, 0-521-56069-1.