One popular class of machine-learned interatomic potential is the Gaussian Approximation Potential (GAP), which combines compact descriptors of local atomic environments with Gaussian process regression to machine learn the potential energy surface of a given system. To date, the GAP framework has been used to successfully develop a number of MLIPs for various systems, including for elemental systems such as Carbon, Silicon, Phosphorus, and Tungsten, as well as for multicomponent systems such as Ge2Sb2Te5 and austenitic stainless steel, Fe7Cr2Ni.
Kocer, Emir; Ko, Tsz Wai; Behler, Jorg (2022). "Neural Network Potentials: A Concise Overview of Methods". Annual Review of Physical Chemistry. 73: 163–86. arXiv:2107.03727. Bibcode:2022ARPC...73..163K. doi:10.1146/annurev-physchem-082720-034254. PMID 34982580. https://doi.org/10.1146%2Fannurev-physchem-082720-034254
Blank, TB; Brown, SD; Calhoun, AW; Doren, DJ (1995). "Neural network models of potential energy surfaces". Journal of Chemical Physics. 103 (10): 4129–37. Bibcode:1995JChPh.103.4129B. doi:10.1063/1.469597. /wiki/Bibcode_(identifier)
Kocer, Emir; Ko, Tsz Wai; Behler, Jorg (2022). "Neural Network Potentials: A Concise Overview of Methods". Annual Review of Physical Chemistry. 73: 163–86. arXiv:2107.03727. Bibcode:2022ARPC...73..163K. doi:10.1146/annurev-physchem-082720-034254. PMID 34982580. https://doi.org/10.1146%2Fannurev-physchem-082720-034254
Kocer, Emir; Ko, Tsz Wai; Behler, Jorg (2022). "Neural Network Potentials: A Concise Overview of Methods". Annual Review of Physical Chemistry. 73: 163–86. arXiv:2107.03727. Bibcode:2022ARPC...73..163K. doi:10.1146/annurev-physchem-082720-034254. PMID 34982580. https://doi.org/10.1146%2Fannurev-physchem-082720-034254
Ghasemi, SA; Hofstetter, A; Saha, S; Goedecker, S (2015). "Interatomic potentials for ionic systems with density functional accuracy based on charge densities obtained by a neural network". Physical Review B. 92 (4): 045131. arXiv:1501.07344. Bibcode:2015PhRvB..92d5131G. doi:10.1103/PhysRevB.92.045131. /wiki/ArXiv_(identifier)
Kocer, Emir; Ko, Tsz Wai; Behler, Jorg (2022). "Neural Network Potentials: A Concise Overview of Methods". Annual Review of Physical Chemistry. 73: 163–86. arXiv:2107.03727. Bibcode:2022ARPC...73..163K. doi:10.1146/annurev-physchem-082720-034254. PMID 34982580. https://doi.org/10.1146%2Fannurev-physchem-082720-034254
Behler, J; Parrinello, M (2007). "Generalized neural-network representation of high-dimensional potential-energy surfaces". Physical Review Letters. 148 (14). Bibcode:2007PhRvL..98n6401B. doi:10.1103/PhysRevLett.98.146401. PMID 17501293. /wiki/Bibcode_(identifier)
Bartók, Albert P.; Payne, Mike C.; Kondor, Risi; Csányi, Gábor (2010-04-01). "Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons". Physical Review Letters. 104 (13): 136403. arXiv:0910.1019. Bibcode:2010PhRvL.104m6403B. doi:10.1103/PhysRevLett.104.136403. PMID 20481899. https://link.aps.org/doi/10.1103/PhysRevLett.104.136403
Bartók, Albert P.; De, Sandip; Poelking, Carl; Bernstein, Noam; Kermode, James R.; Csányi, Gábor; Ceriotti, Michele (December 2017). "Machine learning unifies the modeling of materials and molecules". Science Advances. 3 (12): e1701816. arXiv:1706.00179. Bibcode:2017SciA....3E1816B. doi:10.1126/sciadv.1701816. ISSN 2375-2548. PMC 5729016. PMID 29242828. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5729016
"Gaussian approximation potential – Machine learning atomistic simulation of materials and molecules". Retrieved 2024-04-04. https://gap-ml.org/
Bartók, Albert P.; Kondor, Risi; Csányi, Gábor (2013-05-28). "On representing chemical environments". Physical Review B. 87 (18): 184115. arXiv:1209.3140. Bibcode:2013PhRvB..87r4115B. doi:10.1103/PhysRevB.87.184115. https://link.aps.org/doi/10.1103/PhysRevB.87.184115
Rasmussen, Carl Edward; Williams, Christopher K. I. (2008). Gaussian processes for machine learning. Adaptive computation and machine learning (3. print ed.). Cambridge, Mass.: MIT Press. ISBN 978-0-262-18253-9. 978-0-262-18253-9
Rowe, Patrick; Deringer, Volker L.; Gasparotto, Piero; Csányi, Gábor; Michaelides, Angelos (2020-07-21). "An accurate and transferable machine learning potential for carbon". The Journal of Chemical Physics. 153 (3). arXiv:2006.13655. doi:10.1063/5.0005084. ISSN 0021-9606. http://arxiv.org/pdf/2006.13655
Deringer, Volker L.; Csányi, Gábor (2017-03-03). "Machine learning based interatomic potential for amorphous carbon". Physical Review B. 95 (9): 094203. arXiv:1611.03277. Bibcode:2017PhRvB..95i4203D. doi:10.1103/PhysRevB.95.094203. https://link.aps.org/doi/10.1103/PhysRevB.95.094203
Bartók, Albert P.; Kermode, James; Bernstein, Noam; Csányi, Gábor (2018-12-14). "Machine Learning a General-Purpose Interatomic Potential for Silicon". Physical Review X. 8 (4): 041048. arXiv:1805.01568. Bibcode:2018PhRvX...8d1048B. doi:10.1103/PhysRevX.8.041048. https://link.aps.org/doi/10.1103/PhysRevX.8.041048
Deringer, Volker L.; Caro, Miguel A.; Csányi, Gábor (2020-10-29). "A general-purpose machine-learning force field for bulk and nanostructured phosphorus". Nature Communications. 11 (1): 5461. Bibcode:2020NatCo..11.5461D. doi:10.1038/s41467-020-19168-z. ISSN 2041-1723. PMC 7596484. PMID 33122630. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7596484
Szlachta, Wojciech J.; Bartók, Albert P.; Csányi, Gábor (2014-09-24). "Accuracy and transferability of Gaussian approximation potential models for tungsten". Physical Review B. 90 (10): 104108. Bibcode:2014PhRvB..90j4108S. doi:10.1103/PhysRevB.90.104108. https://link.aps.org/doi/10.1103/PhysRevB.90.104108
Mocanu, Felix C.; Konstantinou, Konstantinos; Lee, Tae Hoon; Bernstein, Noam; Deringer, Volker L.; Csányi, Gábor; Elliott, Stephen R. (2018-09-27). "Modeling the Phase-Change Memory Material, Ge 2 Sb 2 Te 5, with a Machine-Learned Interatomic Potential". The Journal of Physical Chemistry B. 122 (38): 8998–9006. doi:10.1021/acs.jpcb.8b06476. ISSN 1520-6106. PMID 30173522. https://pubs.acs.org/doi/10.1021/acs.jpcb.8b06476
Shenoy, Lakshmi; Woodgate, Christopher D.; Staunton, Julie B.; Bartók, Albert P.; Becquart, Charlotte S.; Domain, Christophe; Kermode, James R. (2024-03-22). "Collinear-spin machine learned interatomic potential for ${\mathrm{Fe}}_{7}{\mathrm{Cr}}_{2}\mathrm{Ni}$ alloy". Physical Review Materials. 8 (3): 033804. arXiv:2309.08689. doi:10.1103/PhysRevMaterials.8.033804. https://link.aps.org/doi/10.1103/PhysRevMaterials.8.033804