Vast progress toward quantum supremacy was made in the 2000s from the first 5-qubit nuclear magnetic resonance computer (2000), the demonstration of Shor's theorem (2001), and the implementation of Deutsch's algorithm in a clustered quantum computer (2007). In 2011, D-Wave Systems of Burnaby, British Columbia, Canada became the first company to sell a quantum computer commercially. In 2012, physicist Nanyang Xu landed a milestone accomplishment by using an improved adiabatic factoring algorithm to factor 143. However, the methods used by Xu were met with objections. Not long after this accomplishment, Google purchased its first quantum computer.
In October 2021, teams from USTC again reported quantum primacy by building two supercomputers called Jiuzhang 2.0 and Zuchongzhi. The light-based Jiuzhang 2.0 implemented gaussian boson sampling to detect 113 photons from a 144-mode optical interferometer and a sampling rate speed up of 1024 – a difference of 37 photons and 10 orders of magnitude over the previous Jiuzhang. Zuchongzhi is a programmable superconducting quantum computer that needs to be kept at extremely low temperatures to work efficiently and uses random circuit sampling to obtain 56 qubits from a tunable coupling architecture of 66 transmons—an improvement over Google's Sycamore 2019 achievement by 3 qubits, meaning a greater computational cost of classical simulation of 2 to 3 orders of magnitude. A third study reported that Zuchongzhi 2.1 completed a sampling task that "is about 6 orders of magnitude more difficult than that of Sycamore" "in the classic simulation".
The difficulty of proving what cannot be done with classical computing is a common problem in definitively demonstrating quantum supremacy. Contrary to decision problems that require yes or no answers, sampling problems ask for samples from probability distributions. If there is a classical algorithm that can efficiently sample from the output of an arbitrary quantum circuit, the polynomial hierarchy would collapse to the third level, which is generally considered to be very unlikely. Boson sampling is a more specific proposal, the classical hardness of which depends upon the intractability of calculating the permanent of a large matrix with complex entries, which is a #P-complete problem. The arguments used to reach this conclusion have been extended to IQP Sampling, where only the conjecture that the average- and worst-case complexities of the problem are the same is needed, as well as to Random Circuit Sampling, which is the task replicated by the Google and USTC research groups.
The following are proposals for demonstrating quantum computational supremacy using current technology, often called NISQ devices. Such proposals include (1) a well-defined computational problem, (2) a quantum algorithm to solve this problem, (3) a comparison best-case classical algorithm to solve the problem, and (4) a complexity-theoretic argument that, under a reasonable assumption, no classical algorithm can perform significantly better than current algorithms (so the quantum algorithm still provides a superpolynomial speedup).
Factoring has some benefit over other supremacy proposals because factoring can be checked quickly with a classical computer just by multiplying integers, even for large instances where factoring algorithms are intractably slow. However, implementing Shor's algorithm for large numbers is infeasible with current technology, so it is not being pursued as a strategy for demonstrating supremacy.
The largest experimental implementation of boson sampling to date had 6 modes so could handle up to 6 photons at a time. The best proposed classical algorithm for simulating boson sampling runs in time
O
(
n
2
n
+
m
n
2
)
{\displaystyle O(n2^{n}+mn^{2})}
for a system with n photons and m output modes. The algorithm leads to an estimate of 50 photons required to demonstrate quantum supremacy with boson sampling.
Some researchers have suggested that the term "quantum supremacy" should not be used, arguing that the word "supremacy" evokes distasteful comparisons to the racist belief of white supremacy. A controversial commentary article in the journal Nature signed by thirteen researchers asserts that the alternative phrase "quantum advantage" should be used instead. John Preskill, the professor of theoretical physics at the California Institute of Technology who coined the term, has since clarified that the term was proposed to explicitly describe the moment that a quantum computer gains the ability to perform a task that a classical computer never could. He further explained that he specifically rejected the term "quantum advantage" as it did not fully encapsulate the meaning of his new term: the word "advantage" would imply that a computer with quantum supremacy would have a slight edge over a classical computer while the word "supremacy" better conveys complete ascendancy over any classical computer. Nature's Philip Ball wrote in December 2020 that the term "quantum advantage" has "largely replaced" the term "quantum supremacy".
Preskill, John (2012-03-26). "Quantum computing and the entanglement frontier". arXiv:1203.5813 [quant-ph]. /wiki/ArXiv_(identifier)
Preskill, John (2018-08-06). "Quantum Computing in the NISQ era and beyond". Quantum. 2: 79. arXiv:1801.00862. Bibcode:2018Quant...2...79P. doi:10.22331/q-2018-08-06-79. https://doi.org/10.22331%2Fq-2018-08-06-79
Zhong, Han-Sen; Wang, Hui; Deng, Yu-Hao; Chen, Ming-Cheng; Peng, Li-Chao; Luo, Yi-Han; Qin, Jian; Wu, Dian; Ding, Xing; Hu, Yi; Hu, Peng (2020-12-03). "Quantum computational advantage using photons". Science. 370 (6523): 1460–1463. arXiv:2012.01625. Bibcode:2020Sci...370.1460Z. doi:10.1126/science.abe8770. ISSN 0036-8075. PMID 33273064. S2CID 227254333. https://www.science.org/doi/10.1126/science.abe8770
Preskill, John (2012-03-26). "Quantum computing and the entanglement frontier". arXiv:1203.5813 [quant-ph]. /wiki/ArXiv_(identifier)
"John Preskill Explains 'Quantum Supremacy'". Quanta Magazine. 2 October 2019. Retrieved 2020-04-21. https://www.quantamagazine.org/john-preskill-explains-quantum-supremacy-20191002/
Manin, Yu. I. (1980). Vychislimoe i nevychislimoe [Computable and Noncomputable] (in Russian). Sov.Radio. pp. 13–15. Archived from the original on 2013-05-10. Retrieved 2013-03-04. https://web.archive.org/web/20130510173823/http://publ.lib.ru/ARCHIVES/M/MANIN_Yuriy_Ivanovich/Manin_Yu.I._Vychislimoe_i_nevychislimoe.(1980).%5Bdjv%5D.zip
Feynman, Richard P. (1982-06-01). "Simulating Physics with Computers". International Journal of Theoretical Physics. 21 (6–7): 467–488. Bibcode:1982IJTP...21..467F. CiteSeerX 10.1.1.45.9310. doi:10.1007/BF02650179. ISSN 0020-7748. S2CID 124545445. /wiki/Bibcode_(identifier)
Harrow, Aram W.; Montanaro, Ashley (September 2017). "Quantum computational supremacy". Nature. 549 (7671): 203–209. arXiv:1809.07442. Bibcode:2017Natur.549..203H. doi:10.1038/nature23458. ISSN 1476-4687. PMID 28905912. S2CID 2514901. /wiki/ArXiv_(identifier)
Papageorgiou, Anargyros; Traub, Joseph F. (2013-08-12). "Measures of quantum computing speedup". Physical Review A. 88 (2): 022316. arXiv:1307.7488. Bibcode:2013PhRvA..88b2316P. doi:10.1103/PhysRevA.88.022316. ISSN 1050-2947. S2CID 41867048. /wiki/ArXiv_(identifier)
Aaronson, Scott; Arkhipov, Alex (2011). "The computational complexity of linear optics". Proceedings of the forty-third annual ACM symposium on Theory of computing. STOC '11. New York, New York, United States: Association for Computing Machinery. pp. 333–342. arXiv:1011.3245. doi:10.1145/1993636.1993682. ISBN 9781450306911. S2CID 681637. 9781450306911
Aaronson, Scott; Chen, Lijie (2016-12-18). "Complexity-Theoretic Foundations of Quantum Supremacy Experiments". arXiv:1612.05903 [quant-ph]. /wiki/ArXiv_(identifier)
Bouland, Adam; Fefferman, Bill; Nirkhe, Chinmay; Vazirani, Umesh (2018-10-29). "On the complexity and verification of quantum random circuit sampling". Nature Physics. 15 (2): 159–163. arXiv:1803.04402. doi:10.1038/s41567-018-0318-2. ISSN 1745-2473. S2CID 125264133. https://dx.doi.org/10.1038/s41567-018-0318-2
Hangleiter, Dominik; Eisert, Jens (2023-07-20). "Computational advantage of quantum random sampling". Reviews of Modern Physics. 95 (3): 035001. arXiv:2206.04079. Bibcode:2023RvMP...95c5001H. doi:10.1103/RevModPhys.95.035001. S2CID 249538723. /wiki/ArXiv_(identifier)
"John Preskill Explains 'Quantum Supremacy'". Quanta Magazine. 2 October 2019. Retrieved 2020-04-21. https://www.quantamagazine.org/john-preskill-explains-quantum-supremacy-20191002/
Metz, Cade (2019-10-23). "Google Claims a Quantum Breakthrough That Could Change Computing (Published 2019)". The New York Times. ISSN 0362-4331. Retrieved 2020-12-07. https://www.nytimes.com/2019/10/23/technology/quantum-computing-google.html
Aaronson, Scott (2019-10-30). "Opinion | Why Google's Quantum Supremacy Milestone Matters (Published 2019)". The New York Times. ISSN 0362-4331. Retrieved 2020-12-07. https://www.nytimes.com/2019/10/30/opinion/google-quantum-computer-sycamore.html
Preskill, John (2018-08-06). "Quantum Computing in the NISQ era and beyond". Quantum. 2: 79. arXiv:1801.00862. Bibcode:2018Quant...2...79P. doi:10.22331/q-2018-08-06-79. https://doi.org/10.22331%2Fq-2018-08-06-79
Preskill, John (2018-08-06). "Quantum Computing in the NISQ era and beyond". Quantum. 2: 79. arXiv:1801.00862. Bibcode:2018Quant...2...79P. doi:10.22331/q-2018-08-06-79. https://doi.org/10.22331%2Fq-2018-08-06-79
"On "Quantum Supremacy"". IBM Research Blog. 2019-10-22. Retrieved 2019-10-24. https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/
Crane, Leah. "IBM says Google may not have reached quantum supremacy after all". New Scientist. Retrieved 2020-12-07. https://www.newscientist.com/article/2220813-ibm-says-google-may-not-have-reached-quantum-supremacy-after-all/
Turing, Alan (1936). On Computable Numbers, With An Application To The Entscheidungsproblem.
Benioff, Paul (1980-05-01). "The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines". Journal of Statistical Physics. 22 (5): 563–591. Bibcode:1980JSP....22..563B. doi:10.1007/BF01011339. ISSN 1572-9613. S2CID 122949592. https://doi.org/10.1007/BF01011339
Feynman, Richard P. (1982-06-01). "Simulating physics with computers". International Journal of Theoretical Physics. 21 (6): 467–488. Bibcode:1982IJTP...21..467F. doi:10.1007/BF02650179. ISSN 1572-9575. S2CID 124545445. https://doi.org/10.1007/BF02650179
Feynman, Richard P. (1982-06-01). "Simulating physics with computers". International Journal of Theoretical Physics. 21 (6): 467–488. Bibcode:1982IJTP...21..467F. doi:10.1007/BF02650179. ISSN 1572-9575. S2CID 124545445. https://doi.org/10.1007/BF02650179
"Quantum Computing". Stanford Encyclopedia of Philosophy. September 30, 2019. https://plato.stanford.edu/entries/qt-quantcomp/
Shor, Peter (1996). Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer.
Monroe, C.; Meekhof, D. M.; King, B. E.; Itano, W. M.; Wineland, D. J. (1995-12-18). "Demonstration of a Fundamental Quantum Logic Gate". Physical Review Letters. 75 (25): 4714–4717. Bibcode:1995PhRvL..75.4714M. doi:10.1103/PhysRevLett.75.4714. ISSN 0031-9007. PMID 10059979. https://doi.org/10.1103%2FPhysRevLett.75.4714
Grover, Lov K. (1996-11-19). "A fast quantum mechanical algorithm for database search". arXiv:quant-ph/9605043. /wiki/ArXiv_(identifier)
Jones, J. A.; Mosca, M. (August 1998). "Implementation of a Quantum Algorithm to Solve Deutsch's Problem on a Nuclear Magnetic Resonance Quantum Computer". The Journal of Chemical Physics. 109 (5): 1648–1653. arXiv:quant-ph/9801027. doi:10.1063/1.476739. ISSN 0021-9606. S2CID 19348964. /wiki/ArXiv_(identifier)
Balaganur, Sameer (2019-11-20). "Man's Race To Quantum Supremacy: The Complete Timeline". Analytics India Magazine. Retrieved 2020-11-16. https://analyticsindiamag.com/race-quantum-supremacy-complete-timeline/
Merali, Zeeya (June 2011). "First sale for quantum computing". Nature. 474 (7349): 18. Bibcode:2011Natur.474...18M. doi:10.1038/474018a. ISSN 0028-0836. PMID 21637232. S2CID 4425833. https://doi.org/10.1038%2F474018a
Battersby, Stephen (13 April 2012). "Controversial quantum computer beats factoring record". New Scientist. Retrieved 2020-11-16. https://www.newscientist.com/article/dn21699-controversial-quantum-computer-beats-factoring-record/
Hardy, Quentin (2013-05-16). "Google Buys a Quantum Computer". Bits Blog. Retrieved 2020-11-16. https://bits.blogs.nytimes.com/2013/05/16/google-buys-a-quantum-computer/
Courtland, Rachel (24 May 2017). "Google Plans to Demonstrate the Supremacy of Quantum Computing". IEEE Spectrum. Retrieved 2018-01-11. https://spectrum.ieee.org/google-plans-to-demonstrate-the-supremacy-of-quantum-computing
Hsu, Jeremy (8 January 2018). "CES 2018: Intel's 49-Qubit Chip Shoots for Quantum Supremacy". IEEE Spectrum. Retrieved 2017-07-22. https://spectrum.ieee.org/intels-49qubit-chip-aims-for-quantum-supremacy
Kim, Mark (October 20, 2017). "Google's quantum computing plans threatened by IBM curveball". New Scientist. Retrieved October 22, 2017. https://www.newscientist.com/article/2151032-googles-quantum-computing-plans-threatened-by-ibm-curveball/
Harris, Mark (November 5, 2018). "Google has enlisted NASA to help it prove quantum supremacy within months". MIT Technology Review. Retrieved 2018-11-30. https://www.technologyreview.com/s/612381/google-has-enlisted-nasa-to-help-it-prove-quantum-supremacy-within-months/
Boixo, Sergio; Isakov, Sergei V.; Smelyanskiy, Vadim N.; Babbush, Ryan; Ding, Nan; Jiang, Zhang; Bremner, Michael J.; Martinis, John M.; Neven, Hartmut (23 April 2018). "Characterizing quantum supremacy in near-term devices". Nature Physics. 14 (6): 595–600. arXiv:1608.00263. Bibcode:2018NatPh..14..595B. doi:10.1038/s41567-018-0124-x. S2CID 4167494. /wiki/ArXiv_(identifier)
Hartnett, Kevin (June 18, 2019). "A New Law to Describe Quantum Computing's Rise?". Quanta Magazine. https://www.quantamagazine.org/does-nevens-law-describe-quantum-computings-rise-20190618/
[1], Financial Times, September 2019 (subscription required) https://www.ft.com/content/b9bb4e54-dbc1-11e9-8f9b-77216ebe1f17
"Google touts quantum computing milestone". MarketWatch. Associated Press. https://www.marketwatch.com/story/google-touts-quantum-computing-milestone-2019-10-23
"Demonstrating Quantum Supremacy" – via www.youtube.com. https://www.youtube.com/watch?v=-ZNEzzDcllU
"Quantum Supremacy Using a Programmable Superconducting Processor". http://ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.html
Arute, Frank; et al. (23 October 2019). "Quantum supremacy using a programmable superconducting processor". Nature. 574 (7779): 505–510. arXiv:1910.11333. Bibcode:2019Natur.574..505A. doi:10.1038/s41586-019-1666-5. PMID 31645734. https://doi.org/10.1038%2Fs41586-019-1666-5
"What the Google vs. IBM debate over quantum supremacy means". ZDNet. https://www.zdnet.com/article/what-the-google-v-ibm-debate-over-quantum-means/
"On "Quantum Supremacy"". IBM Research Blog. 2019-10-22. Retrieved 2019-10-24. https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/
Zialcita, Paolo (23 October 2019). "Google Claims To Achieve Quantum Supremacy — IBM Pushes Back". NPR. Retrieved 2019-10-24. https://www.npr.org/2019/10/23/772710977/google-claims-to-achieve-quantum-supremacy-ibm-pushes-back
Liu, Yong (Alexander); Liu, Xin (Lucy); Li, Fang (Nancy); Fu, Haohuan; Yang, Yuling; Song, Jiawei; Zhao, Pengpeng; Wang, Zhen; Peng, Dajia; Chen, Huarong; Guo, Chu (2021-11-14). "Closing the "quantum supremacy" gap". Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. SC '21. New York, New York, United States: Association for Computing Machinery. pp. 1–12. arXiv:2110.14502. doi:10.1145/3458817.3487399. ISBN 978-1-4503-8442-1. S2CID 239036985. 978-1-4503-8442-1
Bulmer, Jacob F. F.; Bell, Bryn A.; Chadwick, Rachel S.; Jones, Alex E.; Moise, Diana; Rigazzi, Alessandro; Thorbecke, Jan; Haus, Utz-Uwe; Van Vaerenbergh, Thomas; Patel, Raj B.; Walmsley, Ian A. (2022-01-28). "The boundary for quantum advantage in Gaussian boson sampling". Science Advances. 8 (4): eabl9236. arXiv:2108.01622. Bibcode:2022SciA....8.9236B. doi:10.1126/sciadv.abl9236. ISSN 2375-2548. PMC 8791606. PMID 35080972. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8791606
McCormick, Katie (2022-02-10). "Race Not Over Between Classical and Quantum Computers". Physics. 15: 19. Bibcode:2022PhyOJ..15...19M. doi:10.1103/Physics.15.19. S2CID 246910085. https://physics.aps.org/articles/v15/19
Pan, Feng; Chen, Keyang; Zhang, Pan (2022). "Solving the Sampling Problem of the Sycamore Quantum Circuits". Physical Review Letters. 129 (9): 090502. arXiv:2111.03011. Bibcode:2022PhRvL.129i0502P. doi:10.1103/PhysRevLett.129.090502. PMID 36083655. S2CID 251755796. https://journals.aps.org/prl/accepted/f9079Kc7Yd613a0ec6447153516a99a03ca737793
"Ordinary computers can beat Google's quantum computer after all". 2022-08-02. doi:10.1126/science.ade2364. {{cite journal}}: Cite journal requires |journal= (help) https://www.science.org/content/article/ordinary-computers-can-beat-google-s-quantum-computer-after-all
"Google's 'quantum supremacy' usurped by researchers using ordinary supercomputer". TechCrunch. Retrieved 2022-08-07. https://techcrunch.com/2022/08/05/googles-quantum-supremacy-usurped-by-researchers-using-ordinary-supercomputer/
Ball, Philip (2020-12-03). "Physicists in China challenge Google's 'quantum advantage'". Nature. 588 (7838): 380. Bibcode:2020Natur.588..380B. doi:10.1038/d41586-020-03434-7. PMID 33273711. /wiki/Bibcode_(identifier)
Garisto, Daniel (December 3, 2020). "Light-based Quantum Computer Exceeds Fastest Classical Supercomputers". Scientific American. Retrieved 2020-12-07. https://www.scientificamerican.com/article/light-based-quantum-computer-exceeds-fastest-classical-supercomputers/
Conover, Emily (2020-12-03). "The new light-based quantum computer Jiuzhang has achieved quantum supremacy". Science News. Retrieved 2020-12-07. https://www.sciencenews.org/article/new-light-based-quantum-computer-jiuzhang-supremacy
Zhong, Han-Sen; Wang, Hui; Deng, Yu-Hao; Chen, Ming-Cheng; Peng, Li-Chao; Luo, Yi-Han; Qin, Jian; Wu, Dian; Ding, Xing; Hu, Yi; Hu, Peng (2020-12-03). "Quantum computational advantage using photons". Science. 370 (6523): 1460–1463. arXiv:2012.01625. Bibcode:2020Sci...370.1460Z. doi:10.1126/science.abe8770. ISSN 0036-8075. PMID 33273064. S2CID 227254333. https://www.science.org/doi/10.1126/science.abe8770
Zhong, Han-Sen; Deng, Yu-Hao; Qin, Jian; Wang, Hui; Chen, Ming-Cheng; Peng, Li-Chao; Luo, Yi-Han; Wu, Dian; Gong, Si-Qiu; Su, Hao; Hu, Yi (2021-10-25). "Phase-Programmable Gaussian Boson Sampling Using Stimulated Squeezed Light". Physical Review Letters. 127 (18): 180502. arXiv:2106.15534. Bibcode:2021PhRvL.127r0502Z. doi:10.1103/PhysRevLett.127.180502. PMID 34767431. S2CID 235669908. https://link.aps.org/doi/10.1103/PhysRevLett.127.180502
Johnston, Hamish (26 October 2021). "Quantum advantage takes a giant leap in optical and superconducting systems". Physics World. Retrieved 2021-10-27. https://physicsworld.com/quantum-advantage-takes-a-giant-leap-in-optical-and-superconducting-systems/
Wu, Yulin; Bao, Wan-Su; Cao, Sirui; Chen, Fusheng; Chen, Ming-Cheng; Chen, Xiawei; Chung, Tung-Hsun; Deng, Hui; Du, Yajie; Fan, Daojin; Gong, Ming (2021-10-25). "Strong Quantum Computational Advantage Using a Superconducting Quantum Processor". Physical Review Letters. 127 (18): 180501. arXiv:2106.14734. Bibcode:2021PhRvL.127r0501W. doi:10.1103/PhysRevLett.127.180501. PMID 34767433. S2CID 235658633. https://link.aps.org/doi/10.1103/PhysRevLett.127.180501
Zhong, Han-Sen; Deng, Yu-Hao; Qin, Jian; Wang, Hui; Chen, Ming-Cheng; Peng, Li-Chao; Luo, Yi-Han; Wu, Dian; Gong, Si-Qiu; Su, Hao; Hu, Yi; Hu, Peng; Yang, Xiao-Yan; Zhang, Wei-Jun; Li, Hao; Li, Yuxuan; Jiang, Xiao; Gan, Lin; Yang, Guangwen; You, Lixing; Wang, Zhen; Li, Li; Liu, Nai-Le; Renema, Jelmer J.; Lu, Chao-Yang; Pan, Jian-Wei (25 October 2021). "Phase-Programmable Gaussian Boson Sampling Using Stimulated Squeezed Light". Physical Review Letters. 127 (18): 180502. arXiv:2106.15534. Bibcode:2021PhRvL.127r0502Z. doi:10.1103/PhysRevLett.127.180502. PMID 34767431. S2CID 235669908. /wiki/ArXiv_(identifier)
Sanders, Barry C. (2021-10-25). "Quantum Leap for Quantum Primacy". Physics. 14: 147. Bibcode:2021PhyOJ..14..147S. doi:10.1103/Physics.14.147. S2CID 244826882. https://physics.aps.org/articles/v14/147
Qingling Zhu, Sirui Cao; et al. (25 October 2021). "Quantum computational advantage via 60-qubit 24-cycle random circuit sampling". Science Bulletin. 67 (3): 240–245. arXiv:2109.03494. doi:10.1016/j.scib.2021.10.017. ISSN 2095-9273. PMID 36546072. S2CID 237442167. /wiki/ArXiv_(identifier)
Brod, Daniel Jost (1 June 2022). "Loops simplify a set-up to boost quantum computational advantage". Nature. 606 (7912): 31–32. Bibcode:2022Natur.606...31B. doi:10.1038/d41586-022-01402-x. PMID 35650360. S2CID 249277681. https://www.nature.com/articles/d41586-022-01402-x
Madsen, Lars S.; Laudenbach, Fabian; Askarani, Mohsen Falamarzi; Rortais, Fabien; Vincent, Trevor; Bulmer, Jacob F. F.; Miatto, Filippo M.; Neuhaus, Leonhard; Helt, Lukas G.; Collins, Matthew J.; Lita, Adriana E. (1 June 2022). "Quantum computational advantage with a programmable photonic processor". Nature. 606 (7912): 75–81. Bibcode:2022Natur.606...75M. doi:10.1038/s41586-022-04725-x. ISSN 1476-4687. PMC 9159949. PMID 35650354. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9159949
King, Andrew; Nocera, Alberto; Rams, Marek; Dziarmaga, Jacek; Wiersema, Roeland; Bernoudy, William; Raymond, Jack; Kaushal, Nitin; Heinsdorf, Niclas; Harris, Richard; Boothby, Kelly; Altomare, Fabio; Berkley, Andrew; Boschnak, Martin; Chern, Kevin; Christiani, Holly; Cibere, Samantha; Connor, Jake; Dehn, Martin; Deshpande, Rahul; Ejtemaee, Sara; Farré, Pau; Hamer, Kelsey; Hoskinson, Emile; Huang, Shuiyuan; Johnson, Mark; Kortas, Samuel; Ladizinsky, Eric; Lai, Tony; Lanting, Trevor; Li, Ryan; MacDonald, Allison; Marsden, Gaelen; McGeoch, Catherine; Molavi, Reza; Neufeld, Richard; Norouzpour, Mana; Oh, Travis; Pasvolsky, Joel; Poitras, Patrick; Poulin-Lamarre, Gabriel; Prescott, Thomas; Reis, Mauricio; Rich, Chris; Samani, Mohammad; Sheldan, Benjamin; Smirnov, Anatoly; Sterpka, Edward; Trullas Clavera, Berta; Tsai, Nicholas; Volkmann, Mark; Whiticar, Alexander; Whittaker, Jed; Wilkinson, Warren; Yao, Jason; Yi, T.J.; Sandvik, Anders; Alvarez, Gonzalo; Melko, Roger; Carrasquilla, Juan; Franz, Marcel; Amin, Mohammad (1 March 2024). "Computational supremacy in quantum simulation". arXiv:2403.00910v1. /wiki/ArXiv_(identifier)
Cleve, Richard (2000). "An Introduction to Quantum Complexity Theory" (PDF). CERN. Bibcode:2000qcqi.book..103C. https://cds.cern.ch/record/392006/files/9906111.pdf
Watrous, John (2009). "Quantum Computational Complexity". In Meyers, Robert A. (ed.). Encyclopedia of Complexity and Systems Science. Springer New York. pp. 7174–7201. doi:10.1007/978-0-387-30440-3_428. ISBN 9780387758886. S2CID 1380135. 9780387758886
Watrous, John (2009). "Quantum Computational Complexity". In Meyers, Robert A. (ed.). Encyclopedia of Complexity and Systems Science. Springer New York. pp. 7174–7201. doi:10.1007/978-0-387-30440-3_428. ISBN 9780387758886. S2CID 1380135. 9780387758886
Watrous, John (April 21, 2018). "Quantum Computational Complexity". arXiv:0804.3401 [quant-ph]. /wiki/ArXiv_(identifier)
Tušarová, Tereza (2004). "Quantum complexity classes". arXiv:cs/0409051. /wiki/ArXiv_(identifier)
Watrous, John (April 21, 2018). "Quantum Computational Complexity". arXiv:0804.3401 [quant-ph]. /wiki/ArXiv_(identifier)
Lund, A. P.; Bremner, Michael J.; Ralph, T. C. (2017-04-13). "Quantum sampling problems, BosonSampling and quantum supremacy". npj Quantum Information. 3 (1): 15. arXiv:1702.03061. Bibcode:2017npjQI...3...15L. doi:10.1038/s41534-017-0018-2. ISSN 2056-6387. S2CID 54628108. /wiki/ArXiv_(identifier)
Aaronson, Scott; Chen, Lijie (2016-12-18). "Complexity-Theoretic Foundations of Quantum Supremacy Experiments". arXiv:1612.05903 [quant-ph]. /wiki/ArXiv_(identifier)
Bouland, Adam; Fefferman, Bill; Nirkhe, Chinmay; Vazirani, Umesh (2018-10-29). "On the complexity and verification of quantum random circuit sampling". Nature Physics. 15 (2): 159–163. arXiv:1803.04402. doi:10.1038/s41567-018-0318-2. ISSN 1745-2473. S2CID 125264133. https://dx.doi.org/10.1038/s41567-018-0318-2
Gard, Bryan T.; Motes, Keith R.; Olson, Jonathan P.; Rohde, Peter P.; Dowling, Jonathan P. (August 2015). "An introduction to boson-sampling". From Atomic to Mesoscale: the Role of Quantum Coherence in Systems of Various Complexities. World Scientific. pp. 167–192. arXiv:1406.6767. doi:10.1142/9789814678704_0008. ISBN 978-981-4678-70-4. S2CID 55999387. 978-981-4678-70-4
Bremner, Michael J.; Montanaro, Ashley; Shepherd, Dan J. (2016-08-18). "Average-case complexity versus approximate simulation of commuting quantum computations". Physical Review Letters. 117 (8): 080501. arXiv:1504.07999. Bibcode:2016PhRvL.117h0501B. doi:10.1103/PhysRevLett.117.080501. ISSN 0031-9007. PMID 27588839. S2CID 8590553. /wiki/ArXiv_(identifier)
Lund, A. P.; Bremner, Michael J.; Ralph, T. C. (2017-04-13). "Quantum sampling problems, BosonSampling and quantum supremacy". npj Quantum Information. 3 (1): 15. arXiv:1702.03061. Bibcode:2017npjQI...3...15L. doi:10.1038/s41534-017-0018-2. ISSN 2056-6387. S2CID 54628108. /wiki/ArXiv_(identifier)
Bouland, Adam; Fefferman, Bill; Nirkhe, Chinmay; Vazirani, Umesh (2018-10-29). "On the complexity and verification of quantum random circuit sampling". Nature Physics. 15 (2): 159–163. arXiv:1803.04402. doi:10.1038/s41567-018-0318-2. ISSN 1745-2473. S2CID 125264133. https://dx.doi.org/10.1038/s41567-018-0318-2
"Quantum Supremacy Using a Programmable Superconducting Processor". http://ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.html
Ball, Philip (2020-12-03). "Physicists in China challenge Google's 'quantum advantage'". Nature. 588 (7838): 380. Bibcode:2020Natur.588..380B. doi:10.1038/d41586-020-03434-7. PMID 33273711. /wiki/Bibcode_(identifier)
Preskill, John (2018-08-06). "Quantum Computing in the NISQ era and beyond". Quantum. 2: 79. arXiv:1801.00862. Bibcode:2018Quant...2...79P. doi:10.22331/q-2018-08-06-79. https://doi.org/10.22331%2Fq-2018-08-06-79
Harrow, Aram W.; Montanaro, Ashley (September 2017). "Quantum computational supremacy". Nature. 549 (7671): 203–209. arXiv:1809.07442. Bibcode:2017Natur.549..203H. doi:10.1038/nature23458. ISSN 1476-4687. PMID 28905912. S2CID 2514901. /wiki/ArXiv_(identifier)
Jordan, Stephen. "Quantum Algorithm Zoo". math.nist.gov. Archived from the original on 2018-04-29. Retrieved 2017-07-29. https://web.archive.org/web/20180429014516/https://math.nist.gov/quantum/zoo/
Shor, P. (1999-01-01). "Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer". SIAM Review. 41 (2): 303–332. arXiv:quant-ph/9508027. Bibcode:1999SIAMR..41..303S. doi:10.1137/S0036144598347011. ISSN 0036-1445. /wiki/ArXiv_(identifier)
Rubinstein, Michael (2006-10-19). "The distribution of solutions to xy = N mod a with an application to factoring integers". arXiv:math/0610612. /wiki/ArXiv_(identifier)
Babai, László; Beals, Robert; Seress, Ákos (2009). "Polynomial-time theory of matrix groups". Proceedings of the forty-first annual ACM symposium on Theory of computing. STOC '09. New York, New York, United States: Association for Computing Machinery. pp. 55–64. CiteSeerX 10.1.1.674.9429. doi:10.1145/1536414.1536425. ISBN 9781605585062. S2CID 9052772. 9781605585062
Shor, P. (1999-01-01). "Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer". SIAM Review. 41 (2): 303–332. arXiv:quant-ph/9508027. Bibcode:1999SIAMR..41..303S. doi:10.1137/S0036144598347011. ISSN 0036-1445. /wiki/ArXiv_(identifier)
Rivest, R. L.; Shamir, A.; Adleman, L. (February 1978). "A Method for Obtaining Digital Signatures and Public-key Cryptosystems". Commun. ACM. 21 (2): 120–126. CiteSeerX 10.1.1.607.2677. doi:10.1145/359340.359342. ISSN 0001-0782. S2CID 2873616. /wiki/CiteSeerX_(identifier)
Martín-López, Enrique; Laing, Anthony; Lawson, Thomas; Alvarez, Roberto; Zhou, Xiao-Qi; O'Brien, Jeremy L. (November 2012). "Experimental realization of Shor's quantum factoring algorithm using qubit recycling". Nature Photonics. 6 (11): 773–776. arXiv:1111.4147. Bibcode:2012NaPho...6..773M. doi:10.1038/nphoton.2012.259. ISSN 1749-4893. S2CID 46546101. /wiki/ArXiv_(identifier)
Fowler, Austin G.; Mariantoni, Matteo; Martinis, John M.; Cleland, Andrew N. (2012-09-18). "Surface codes: Towards practical large-scale quantum computation". Physical Review A. 86 (3): 032324. arXiv:1208.0928. Bibcode:2012PhRvA..86c2324F. doi:10.1103/PhysRevA.86.032324. S2CID 119277773. /wiki/ArXiv_(identifier)
Aaronson, Scott; Arkhipov, Alex (2011). "The computational complexity of linear optics". Proceedings of the forty-third annual ACM symposium on Theory of computing. STOC '11. New York, New York, United States: Association for Computing Machinery. pp. 333–342. arXiv:1011.3245. doi:10.1145/1993636.1993682. ISBN 9781450306911. S2CID 681637. 9781450306911
Rahimi-Keshari, Saleh; Ralph, Timothy C.; Caves, Carlton M. (2016-06-20). "Sufficient Conditions for Efficient Classical Simulation of Quantum Optics". Physical Review X. 6 (2): 021039. arXiv:1511.06526. Bibcode:2016PhRvX...6b1039R. doi:10.1103/PhysRevX.6.021039. S2CID 23490704. /wiki/ArXiv_(identifier)
Carolan, Jacques; Harrold, Christopher; Sparrow, Chris; Martín-López, Enrique; Russell, Nicholas J.; Silverstone, Joshua W.; Shadbolt, Peter J.; Matsuda, Nobuyuki; Oguma, Manabu (2015-08-14). "Universal linear optics". Science. 349 (6249): 711–716. arXiv:1505.01182. doi:10.1126/science.aab3642. ISSN 0036-8075. PMID 26160375. S2CID 19067232. /wiki/ArXiv_(identifier)
Clifford, Peter; Clifford, Raphaël (2017-06-05). "The Classical Complexity of Boson Sampling". arXiv:1706.01260 [cs.DS]. /wiki/ArXiv_(identifier)
Neville, Alex; Sparrow, Chris; Clifford, Raphaël; Johnston, Eric; Birchall, Patrick M.; Montanaro, Ashley; Laing, Anthony (2017-10-02). "No imminent quantum supremacy by boson sampling". Nature Physics. 13 (12): 1153–1157. arXiv:1705.00686. Bibcode:2017arXiv170500686N. doi:10.1038/nphys4270. ISSN 1745-2473. S2CID 73635825. /wiki/ArXiv_(identifier)
Clifford, Peter; Clifford, Raphaël (2017-06-05). "The Classical Complexity of Boson Sampling". arXiv:1706.01260 [cs.DS]. /wiki/ArXiv_(identifier)
Neville, Alex; Sparrow, Chris; Clifford, Raphaël; Johnston, Eric; Birchall, Patrick M.; Montanaro, Ashley; Laing, Anthony (2017-10-02). "No imminent quantum supremacy by boson sampling". Nature Physics. 13 (12): 1153–1157. arXiv:1705.00686. Bibcode:2017arXiv170500686N. doi:10.1038/nphys4270. ISSN 1745-2473. S2CID 73635825. /wiki/ArXiv_(identifier)
Boixo, Sergio; Isakov, Sergei V.; Smelyanskiy, Vadim N.; Babbush, Ryan; Ding, Nan; Jiang, Zhang; Bremner, Michael J.; Martinis, John M.; Neven, Hartmut (23 April 2018). "Characterizing quantum supremacy in near-term devices". Nature Physics. 14 (6): 595–600. arXiv:1608.00263. Bibcode:2018NatPh..14..595B. doi:10.1038/s41567-018-0124-x. S2CID 4167494. /wiki/ArXiv_(identifier)
Bouland, Adam; Fefferman, Bill; Nirkhe, Chinmay; Vazirani, Umesh (2018-10-29). "On the complexity and verification of quantum random circuit sampling". Nature Physics. 15 (2): 159–163. arXiv:1803.04402. doi:10.1038/s41567-018-0318-2. ISSN 1745-2473. S2CID 125264133. https://dx.doi.org/10.1038/s41567-018-0318-2
Courtland, Rachel (24 May 2017). "Google Plans to Demonstrate the Supremacy of Quantum Computing". IEEE Spectrum. Retrieved 2018-01-11. https://spectrum.ieee.org/google-plans-to-demonstrate-the-supremacy-of-quantum-computing
De Raedt, Hans; Jin, Fengping; Willsch, Dennis; Willsch, Madita; Yoshioka, Naoki; Ito, Nobuyasu; Yuan, Shengjun; Michielsen, Kristel (November 2018). "Massively parallel quantum computer simulator, eleven years later". Computer Physics Communications. 237: 47–61. arXiv:1805.04708. doi:10.1016/j.cpc.2018.11.005. https://doi.org/10.1016%2Fj.cpc.2018.11.005
Pednault, Edwin; John A. Gunnels; Giacomo Nannicini; Lior Horesh; Thomas Magerlein; Edgar Solomonik; Robert Wisnieff (October 2017). "Breaking the 49-Qubit Barrier in the Simulation of Quantum Circuits". arXiv:1710.05867 [quant-ph]. /wiki/ArXiv_(identifier)
Kim, Mark (October 20, 2017). "Google's quantum computing plans threatened by IBM curveball". New Scientist. Retrieved October 22, 2017. https://www.newscientist.com/article/2151032-googles-quantum-computing-plans-threatened-by-ibm-curveball/
"Quantum Supremacy Using a Programmable Superconducting Processor". Google AI Blog. Retrieved 2019-11-02. http://ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.html
Metz, Cade (23 October 2019). "Google Claims a Quantum Breakthrough That Could Change Computing". The New York Times. Retrieved 14 January 2020. https://www.nytimes.com/2019/10/23/technology/quantum-computing-google.html
Edwin Pednault; John Gunnels; Giacomo Nannicini; Lior Horesh; Robert Wisnieff (October 2019). "Leveraging Secondary Storage to Simulate Deep 54-qubit Sycamore Circuits". arXiv:1910.09534 [quant-ph]. /wiki/ArXiv_(identifier)
"Google and IBM Clash Over Quantum Supremacy Claim". Quanta Magazine. 23 October 2019. Retrieved 2020-10-29. https://www.quantamagazine.org/google-and-ibm-clash-over-quantum-supremacy-claim-20191023/
Kalai, Gil (2011-06-02). "How Quantum Computers Fail: Quantum Codes, Correlations in Physical Systems, and Noise Accumulation". arXiv:1106.0485 [quant-ph]. /wiki/ArXiv_(identifier)
Shor, Peter W. (1995-10-01). "Scheme for reducing decoherence in quantum computer memory". Physical Review A. 52 (4): R2493 – R2496. Bibcode:1995PhRvA..52.2493S. doi:10.1103/PhysRevA.52.R2493. PMID 9912632. /wiki/Bibcode_(identifier)
Steane, A. M. (1996-07-29). "Error Correcting Codes in Quantum Theory". Physical Review Letters. 77 (5): 793–797. Bibcode:1996PhRvL..77..793S. doi:10.1103/PhysRevLett.77.793. PMID 10062908. /wiki/Bibcode_(identifier)
Aharonov, Dorit; Ben-Or, Michael (1999-06-30). "Fault-Tolerant Quantum Computation With Constant Error Rate". arXiv:quant-ph/9906129. /wiki/ArXiv_(identifier)
Knill, E. (2005-03-03). "Quantum computing with realistically noisy devices". Nature. 434 (7029): 39–44. arXiv:quant-ph/0410199. Bibcode:2005Natur.434...39K. doi:10.1038/nature03350. ISSN 0028-0836. PMID 15744292. S2CID 4420858. /wiki/ArXiv_(identifier)
Kalai, Gil (2016-05-03). "The Quantum Computer Puzzle (Expanded Version)". arXiv:1605.00992 [quant-ph]. /wiki/ArXiv_(identifier)
Kalai, Gil (2011-06-02). "How Quantum Computers Fail: Quantum Codes, Correlations in Physical Systems, and Noise Accumulation". arXiv:1106.0485 [quant-ph]. /wiki/ArXiv_(identifier)
Dyakonov, M. I. (2007). "Is Fault-Tolerant Quantum Computation Really Possible?". In Luryi, S.; Xu, J.; Zaslavsky, A. (eds.). Future Trends in Microelectronics. Up the Nano Creek. Wiley. pp. 4–18. arXiv:quant-ph/0610117. Bibcode:2006quant.ph.10117D. /wiki/ArXiv_(identifier)
Board, The Editorial (17 December 2019). "Opinion | Achieving Quantum Wokeness". Wall Street Journal. Retrieved 2019-12-21. https://www.wsj.com/articles/achieving-quantum-wokeness-11576540808
Knapton, Sarah (2019-12-17). "Academics derided for claiming 'quantum supremacy' is a racist and colonialist term". The Telegraph. ISSN 0307-1235. Retrieved 2019-12-21. https://www.telegraph.co.uk/science/2019/12/17/academics-derided-claiming-quantum-supremacy-racist-colonialist/
Palacios-Berraquero, Carmen; Mueck, Leonie; Persaud, Divya M. (2019-12-10). "Instead of 'supremacy' use 'quantum advantage'". Nature. 576 (7786): 213. doi:10.1038/d41586-019-03781-0. PMID 31822842. https://doi.org/10.1038%2Fd41586-019-03781-0
"John Preskill Explains 'Quantum Supremacy'". Quanta Magazine. 2 October 2019. Retrieved 2020-04-21. https://www.quantamagazine.org/john-preskill-explains-quantum-supremacy-20191002/
Ball, Philip (17 December 2020). "Physicists in China challenge Google's 'quantum advantage'". Nature. 588 (7838): 380. Bibcode:2020Natur.588..380B. doi:10.1038/d41586-020-03434-7. PMID 33273711. S2CID 227282052. Retrieved 16 December 2020. https://www.nature.com/articles/d41586-020-03434-7