When using an unsymmetrical enolizable carbonyl compound as a substrate, the choice of reaction conditions can help control whether the kinetic or thermodynamic silyl enol ether is preferentially formed. For instance, when using lithium diisopropylamide (LDA), a strong and sterically hindered base, at low temperature (e.g., −78°C), the kinetic silyl enol ether (with a less substituted double bond) preferentially forms due to sterics. When using triethylamine, a weak base, the thermodynamic silyl enol ether (with a more substituted double bond) is preferred.
Lithium enolates, one of the precursors to silyl enol ethers, can also be generated from silyl enol ethers using methyllithium. The reaction occurs via nucleophilic substitution at the silicon of the silyl enol ether, producing the lithium enolate and tetramethylsilane.
Reacting a silyl enol ether with PhSCl, a good and soft electrophile, provides a carbonyl compound sulfenylated at an alpha carbon. In this reaction, the trimethylsilyl group of the silyl enol ether is removed by the chloride ion released from the PhSCl upon attack of its electrophilic sulfur atom.
Cyclic silyl enol ethers undergo regiocontrolled one-carbon ring contractions. These reactions employ electron-deficient sulfonyl azides, which undergo chemoselective, uncatalyzed [3+2] cycloaddition to the silyl enol ether, followed by loss of dinitrogen, and alkyl migration to give ring-contracted products in good yield. These reactions may be directed by substrate stereochemistry, giving rise to stereoselective ring-contracted product formation.
Peter Brownbridge (1983). "Silyl Enol Ethers in Synthesis - Part I". Synthesis. 1983: 1–28. doi:10.1055/s-1983-30204. /wiki/Doi_(identifier)
Ian Fleming (2007). "A Primer on Organosilicon Chemistry". Ciba Foundation Symposium 121 - Silicon Biochemistry. Novartis Foundation Symposia. Vol. 121. Wiley. pp. 112–122. doi:10.1002/9780470513323.ch7. ISBN 978-0-470-51332-3. PMID 3743226. 978-0-470-51332-3
Clayden, J., Greeves, N., & Warren, S. (2012). Silyl enol ethers. In Organic chemistry (Second ed., pp. 466-467). Oxford University Press.
Clayden, J., Greeves, N., & Warren, S. (2012). Silyl enol ethers. In Organic chemistry (Second ed., pp. 466-467). Oxford University Press.
Clayden, J., Greeves, N., & Warren, S. (2012). Silyl enol ethers. In Organic chemistry (Second ed., pp. 466-467). Oxford University Press.
Clayden, J., Greeves, N., & Warren, S. (2012). Nucleophilic substitution at silicon. In Organic chemistry (Second ed., pp. 669-670). Oxford University Press.
Jung, M. E., & Perez, F. (2009). Synthesis of 2-Substituted 7-Hydroxybenzofuran-4-carboxylates via Addition of Silyl Enol Ethers to o -Benzoquinone Esters. Organic Letters, 11(10), 2165–2167. doi:10.1021/ol900416x //doi.org/10.1021/ol900416x
Chan, T.-H. (1991). Formation and Addition Reactions of Enol Ethers. In Comprehensive Organic Synthesis (pp. 595–628). Elsevier. doi:10.1016/B978-0-08-052349-1.00042-1 //doi.org/10.1016/B978-0-08-052349-1.00042-1
Chan, T.-H. (1991). Formation and Addition Reactions of Enol Ethers. In Comprehensive Organic Synthesis (pp. 595–628). Elsevier. doi:10.1016/B978-0-08-052349-1.00042-1 //doi.org/10.1016/B978-0-08-052349-1.00042-1
Clayden, J., Greeves, N., & Warren, S. (2012). Kinetically controlled enolate formation. In Organic chemistry (Second ed., pp. 600-601). Oxford University Press.
Chan, T.-H. (1991). Formation and Addition Reactions of Enol Ethers. In Comprehensive Organic Synthesis (pp. 595–628). Elsevier. doi:10.1016/B978-0-08-052349-1.00042-1 //doi.org/10.1016/B978-0-08-052349-1.00042-1
Clayden, J., Greeves, N., & Warren, S. (2012). Thermodynamically controlled enolate formation. In Organic chemistry (Second ed., pp. 599-600). Oxford University Press.
Clayden, J., Greeves, N., & Warren, S. (2012). Making the more substituted enolate equivalent: thermodynamic enolates. In Organic chemistry (Second ed., p. 636). Oxford University Press.
Clive, Derrick L. J. & Sunasee, Rajesh (2007). "Formation of Benzo-Fused Carbocycles by Formal Radical Cyclization onto an Aromatic Ring". Org. Lett. 9 (14): 2677–2680. doi:10.1021/ol070849l. PMID 17559217. /wiki/Organic_Letters
Clayden, J., Greeves, N., & Warren, S. (2012). Silyl enol ethers in aldol reactions. In Organic chemistry (Second ed., pp. 626-627). Oxford University Press.
Clayden, J., Greeves, N., & Warren, S. (2012). Silyl enol ethers are alkylated by SN1-reactive electrophiles in the presence of Lewis acid. In Organic chemistry (Second ed., p. 595). Oxford University Press.
Clayden, J., Greeves, N., & Warren, S. (2012). Conjugate addition of silyl enol ethers leads to the silyl enol ether of the product. In Organic chemistry (Second ed., pp. 608-609). Oxford University Press.
Quirk, R.P., & Pickel, D.L. (2012). Silyl enol ethers. In Controlled end-group functionalization (including telechelics) (pp. 405-406). Elsevier. doi:10.1016/B978-0-444-53349-4.00168-0 //doi.org/10.1016/B978-0-444-53349-4.00168-0
Clayden, J., Greeves, N., & Warren, S. (2012). Silyl enol ethers in aldol reactions. In Organic chemistry (Second ed., pp. 626-627). Oxford University Press.
Chan, T.-H. (1991). Formation and Addition Reactions of Enol Ethers. In Comprehensive Organic Synthesis (pp. 595–628). Elsevier. doi:10.1016/B978-0-08-052349-1.00042-1 //doi.org/10.1016/B978-0-08-052349-1.00042-1
Clayden, J., Greeves, N., & Warren, S. (2012). Kinetically controlled enolate formation. In Organic chemistry (Second ed., pp. 600-601). Oxford University Press.
House, H. O., Gall, M., & Olmstead, H. D. (1971). Chemistry of carbanions. XIX. Alkylation of enolates from unsymmetrical ketones. The Journal of Organic Chemistry, 36(16), 2361–2371. doi:10.1021/jo00815a037 //doi.org/10.1021/jo00815a037
Clayden, J., Greeves, N., & Warren, S. (2012). Silyl enol ethers. In Organic chemistry (Second ed., pp. 466-467). Oxford University Press.
House, H. O., Gall, M., & Olmstead, H. D. (1971). Chemistry of carbanions. XIX. Alkylation of enolates from unsymmetrical ketones. The Journal of Organic Chemistry, 36(16), 2361–2371. doi:10.1021/jo00815a037 //doi.org/10.1021/jo00815a037
Clayden, J., Greeves, N., & Warren, S. (2012). Silyl enol ethers. In Organic chemistry (Second ed., pp. 466-467). Oxford University Press.
Matsuo, J., & Murakami, M. (2013). The Mukaiyama Aldol Reaction: 40 Years of Continuous Development. Angewandte Chemie International Edition, 52(35), 9109–9118. doi:10.1002/anie.201303192 //doi.org/10.1002/anie.201303192
Narasaka, K., Soai, K., Aikawa, Y., & Mukaiyama, T. (1976). The Michael Reaction of Silyl Enol Ethers with α, β-Unsaturated Eetones and Acetals in the Presence of Titanium Tetraalkoxide and Titanium Tetrachloride. Bulletin of the Chemical Society of Japan, 49(3), 779-783. doi:10.1246/bcsj.49.779 //doi.org/10.1246/bcsj.49.779
M. T. Reetz & A. Giannis (1981) Lewis Acid Mediated α-Thioalkylation of Ketones, Synthetic Communications, 11:4, 315-322, doi:10.1080/00397918108063611 //doi.org/10.1080/00397918108063611
Clayden, J., Greeves, N., & Warren, S. (2012). Conjugate addition of silyl enol ethers leads to the silyl enol ether of the product. In Organic chemistry (Second ed., pp. 608-609). Oxford University Press.
Clayden, J., Greeves, N., & Warren, S. (2012). Silyl enol ethers are alkylated by SN1-reactive electrophiles in the presence of Lewis acid. In Organic chemistry (Second ed., p. 595). Oxford University Press.
Clayden, J., Greeves, N., & Warren, S. (2012). Silyl enol ethers are alkylated by SN1-reactive electrophiles in the presence of Lewis acid. In Organic chemistry (Second ed., p. 595). Oxford University Press.
Teruo Umemoto; Kyoichi Tomita; Kosuke Kawada (1990). "N-Fluoropyridinium Triflate: An Electrophilic Fluorinating Agent". Organic Syntheses. 69: 129. doi:10.1002/0471264180.os069.16. ISBN 0-471-26422-9. 0-471-26422-9
Clayden, J., Greeves, N., & Warren, S. (2012). Reactions of silyl enol ethers with halogen and sulfur electrophiles. In Organic chemistry (Second ed., pp. 469-470). Oxford University Press.
Organic Syntheses, Coll. Vol. 7, p.282 (1990); Vol. 64, p.118 (1986) Article. /wiki/Organic_Syntheses
Chibale, K., & Warren, S. (1996). Kinetic resolution in asymmetric anti aldol reactions of branched and straight chain racemic 2-phenylsulfanyl aldehydes: asymmetric synthesis of cyclic ethers and lactones by phenylsulfanyl migration. Journal of the Chemical Society, Perkin Transactions 1, (16), 1935-1940. doi:10.1039/P19960001935 //doi.org/10.1039/P19960001935
Clayden, J., Greeves, N., & Warren, S. (2012). Reactions of silyl enol ethers with halogen and sulfur electrophiles. In Organic chemistry (Second ed., pp. 469-470). Oxford University Press.
Clayden, J., Greeves, N., & Warren, S. (2012). Reactions of silyl enol ethers with halogen and sulfur electrophiles. In Organic chemistry (Second ed., pp. 469-470). Oxford University Press.
Clayden, J., Greeves, N., & Warren, S. (2012). Hydrolysis of enol ethers. In Organic chemistry (Second ed., pp. 468-469). Oxford University Press.
Gupta, S. K., Sargent, J. R., & Weber, W. P. (2002). Synthesis and photo-oxidative degradation of 2, 6-bis-[ω-trimethylsiloxypolydimethylsiloxy-2′-dimethylsilylethyl] acetophenone. Polymer, 43(1), 29-35. doi:10.1016/S0032-3861(01)00602-4 //doi.org/10.1016/S0032-3861(01)00602-4
Clayden, J., Greeves, N., & Warren, S. (2012). Hydrolysis of enol ethers. In Organic chemistry (Second ed., pp. 468-469). Oxford University Press.
Clayden, J., Greeves, N., & Warren, S. (2012). Hydrolysis of enol ethers. In Organic chemistry (Second ed., pp. 468-469). Oxford University Press.
(a) Wohl, R. Helv. Chim. Acta 1973, 56, 1826. (b) Xu, Y. Xu, G.; Zhu, G.; Jia, Y.; Huang, Q. J. Fluorine Chem. 1999, 96, 79.
Mitcheltree, M. J.; Konst, Z. A.; Herzon, S. B. Tetrahedron 2013, 69, 5634.
Clayden, J., Greeves, N., & Warren, S. (2012). Conjugate addition of silyl enol ethers leads to the silyl enol ether of the product. In Organic chemistry (Second ed., pp. 608-609). Oxford University Press.
Clayden, J., Greeves, N., & Warren, S. (2012). Conjugate addition of silyl enol ethers leads to the silyl enol ether of the product. In Organic chemistry (Second ed., pp. 608-609). Oxford University Press.