Blake discussed three methods for calculating the canonical form: exhaustion of implicants, iterated consensus, and multiplication. The iterated consensus method was rediscovered by Edward W. Samson and Burton E. Mills, Willard Quine, and Kurt Bing. In 2022, Milan Mossé, Harry Sha, and Li-Yang Tan discovered a near-optimal algorithm for computing the Blake canonical form of a formula in conjunctive normal form.
Brown, Frank Markham [at Wikidata] (2012) [2003, 1990]. "Chapter 3: The Blake Canonical Form". Boolean Reasoning - The Logic of Boolean Equations (reissue of 2nd ed.). Mineola, New York: Dover Publications, Inc. pp. 4, 77ff, 81. ISBN 978-0-486-42785-0. [1] 978-0-486-42785-0
Sasao, Tsutomu (1996). "Ternary Decision Diagrams and their Applications". In Sasao, Tsutomu; Fujita, Masahira (eds.). Representations of Discrete Functions. p. 278. doi:10.1007/978-1-4613-1385-4_12. ISBN 978-0792397205. 978-0792397205
Kandel, Abraham (1998). Foundations of Digital Logic Design. World Scientific. p. 177. ISBN 978-9-81023110-1. 978-9-81023110-1
Knuth, Donald Ervin (2011). Combinatorial Algorithms, Part 1. The Art of Computer Programming. Vol. 4A. p. 54. /wiki/Donald_Ervin_Knuth
Brown, Frank Markham [at Wikidata] (2012) [2003, 1990]. "Chapter 3: The Blake Canonical Form". Boolean Reasoning - The Logic of Boolean Equations (reissue of 2nd ed.). Mineola, New York: Dover Publications, Inc. pp. 4, 77ff, 81. ISBN 978-0-486-42785-0. [1] 978-0-486-42785-0
Kandel, Abraham (1998). Foundations of Digital Logic Design. World Scientific. p. 177. ISBN 978-9-81023110-1. 978-9-81023110-1
Feldman, Vitaly [at Wikidata] (2009). "Hardness of Approximate Two-Level Logic Minimization and PAC Learning with Membership Queries". Journal of Computer and System Sciences. 75: 13–25 [13–14]. doi:10.1016/j.jcss.2008.07.007. https://www.wikidata.org/wiki/Q102311396
Gimpel, James F. (1965). "A Method for Producing a Boolean Function Having an Arbitrary Prescribed Prime Implicant Table". IEEE Transactions on Computers. 14: 485–488. /wiki/IEEE_Transactions_on_Computers
Paul, Wolfgang Jakob [in German] (1974). "Boolesche Minimalpolynome und Überdeckungsprobleme". Acta Informatica (in German). 4 (4): 321–336. doi:10.1007/BF00289615. S2CID 35973949. https://de.wikipedia.org/wiki/Wolfgang_Paul_(Informatiker)
Blake, Archie (November 1932). "Canonical expressions in Boolean algebra". Bulletin of the American Mathematical Society. Abstracts of Papers: 805. /wiki/Archie_Blake_(mathematician)
Blake, Archie (1937). Canonical expressions in Boolean algebra (Dissertation). Department of Mathematics, University of Chicago: University of Chicago Libraries. /wiki/Archie_Blake_(mathematician)
Blake, Archie (1938). "Canonical expressions in Boolean algebra". The Journal of Symbolic Logic. 3 (2). /wiki/Archie_Blake_(mathematician)
Blake, Archie (September 1938). "Corrections to Canonical Expressions in Boolean Algebra". The Journal of Symbolic Logic. 3 (3): 112–113. doi:10.2307/2267595. JSTOR 2267595. S2CID 5810863. /wiki/Archie_Blake_(mathematician)
McKinsey, John Charles Chenoweth, ed. (June 1938). "Blake, Archie. Canonical expressions in Boolean algebra, Department of Mathematics, University of Chicago, 1937". The Journal of Symbolic Logic (Review). 3 (2:93): 93. doi:10.2307/2267634. JSTOR 2267634. S2CID 122640691. /wiki/John_Charles_Chenoweth_McKinsey
Brown, Frank Markham [at Wikidata]; Rudeanu, Sergiu [at Wikidata] (1986), A Functional Approach to the Theory of Prime Implicants, Publication de l'institut mathématique, Nouvelle série, vol. 40, pp. 23–32 https://www.wikidata.org/wiki/Q112500339
Brown, Frank Markham [at Wikidata] (2012) [2003, 1990]. "Chapter 3: The Blake Canonical Form". Boolean Reasoning - The Logic of Boolean Equations (reissue of 2nd ed.). Mineola, New York: Dover Publications, Inc. pp. 4, 77ff, 81. ISBN 978-0-486-42785-0. [1] 978-0-486-42785-0
Poretsky, Platon Sergeevich (1884). "O sposobach reschenija lopgischeskich rawenstw i ob obrathom spocobe matematischeskoi logiki" О способах решения логических равенств и об обратном способе [On methods of solving logical equalities and the inverse method of mathematical logic. An essay in construction of a complete and accessible theory of deduction on qualitative forms]. Collected Reports of Meetings of Physical and Mathematical Sciences Section of Naturalists' Society of Kazan University (in Russian) (2). (NB. This publication is also referred to as "On methods of solution of logical equalities and on inverse method of mathematical logic".) О способах решения логических равенств и об обратном способе
Vasyukevich, Vadim O. (2011). "1.10 Venjunctive Properties (Basic Formulae)". Written at Riga, Latvia. Asynchronous Operators of Sequential Logic: Venjunction & Sequention — Digital Circuits Analysis and Design. Lecture Notes in Electrical Engineering (LNEE). Vol. 101 (1 ed.). Berlin / Heidelberg, Germany: Springer-Verlag. p. 20. doi:10.1007/978-3-642-21611-4. ISBN 978-3-642-21610-7. ISSN 1876-1100. LCCN 2011929655. (xiii+1+123+7 pages) (NB. The back cover of this book erroneously states volume 4, whereas it actually is volume 101.) 978-3-642-21610-7
Brown, Frank Markham [at Wikidata] (2012) [2003, 1990]. "Chapter 3: The Blake Canonical Form". Boolean Reasoning - The Logic of Boolean Equations (reissue of 2nd ed.). Mineola, New York: Dover Publications, Inc. pp. 4, 77ff, 81. ISBN 978-0-486-42785-0. [1] 978-0-486-42785-0
Samson, Edward Walter; Mills, Burton E. (April 1954). Circuit Minimization: Algebra and Algorithms for New Boolean Canonical Expressions (Technical Report). Bedford, Massachusetts, USA: Air Force Cambridge Research Center. AFCRC TR 54-21. /wiki/Air_Force_Cambridge_Research_Center
Quine, Willard Van Orman (November 1955). "A Way to Simplify Truth Functions". The American Mathematical Monthly. 62 (9): 627–631. doi:10.2307/2307285. hdl:10338.dmlcz/142789. JSTOR 2307285. /wiki/Willard_Van_Orman_Quine
Bing, Kurt (1955). "On simplifying propositional formulas". Bulletin of the American Mathematical Society. 61: 560. /wiki/Bulletin_of_the_American_Mathematical_Society
Bing, Kurt (1956). "On simplifying truth-functional formulas". The Journal of Symbolic Logic. 21 (3): 253–254. doi:10.2307/2269097. JSTOR 2269097. S2CID 37877557. /wiki/The_Journal_of_Symbolic_Logic
Mossé, Milan; Sha, Harry; Tan, Li-Yang (2022). "A Generalization of the Satisfiability Coding Lemma and Its Applications". DROPS-IDN/V2/Document/10.4230/LIPIcs.SAT.2022.9. Leibniz International Proceedings in Informatics (LIPIcs). 236. Schloss Dagstuhl – Leibniz-Zentrum für Informatik: 9:1–9:18. doi:10.4230/LIPIcs.SAT.2022.9. ISBN 978-3-95977-242-6. 978-3-95977-242-6