By comparing the Taylor series expansion of the trigonometric functions sin and cos with c 0 ( x ) {\displaystyle \ c_{0}(x)\ } and c 0 ( x ) , {\displaystyle \ c_{0}(x)\ ,} a relationship can be found. For x > 0 : {\displaystyle ~x>0\ :}
Similarly, by comparing with the expansion of the hyperbolic functions sinh and cosh we find for x < 0 : {\displaystyle ~x<0\ :}
Circular orbits and elliptical orbits use sine and cosine relations, and hyperbolic orbits use the sinh and cosh relations. Parabolic orbits (marginal escape orbits) formulas are a special in-between case.
For higher-order Stumpff functions needed for both ordinary trajectories and for perturbation theory, one can use the recurrence relation:
or when x ≠ 0 {\displaystyle \ x\neq 0\ }
Using this recursion, the two further Stumpf functions needed for the universal variable formulation are, for x > 0 : {\displaystyle ~x>0\ :}
and for x < 0 : {\displaystyle ~x<0\ :}
The Stumpff functions can be expressed in terms of the Mittag-Leffler function:
Karl Stumpff (1956). Himmelsmechanik [Celestial Mechanics] (in German). Deutscher Verlag der Wissenschaften. /wiki/Karl_Stumpff ↩
Danby, J.M.A. (1988). Fundamentals of Celestial Mechanics (revised ed.). Willman–Bell. ISBN 9780023271403. 9780023271403 ↩
Stiefel, Eduard; Scheifele, Gerhard (1971). Linear and Regular Celestial Mechanics: Perturbed two-body motion, numerical methods, canonical theory. Springer-Verlag. ISBN 978-0-38705119-2. 978-0-38705119-2 ↩