A Euclidean minimum spanning tree, for a set of
n
{\displaystyle n}
points in the Euclidean plane or Euclidean space, is a system of line segments, having only the given points as their endpoints, whose union includes all of the points in a connected set, and which has the minimum possible total length of any such system. Such a network cannot contain a polygonal ring of segments; if one existed, the network could be shortened by removing an edge of the polygon. Therefore, the minimum-length network forms a tree. This observation leads to the equivalent definition that a Euclidean minimum spanning tree is a tree of line segments between pairs of the given points, of minimum total length. The same tree may also be described as a minimum spanning tree of a weighted complete graph, having the given points as its vertices and the distances between points as edge weights. The same points may have more than one minimum spanning tree. For instance, for the vertices of a regular polygon, removing any edge of the polygon produces a minimum spanning tree.
Publications on the Euclidean minimum spanning tree commonly abbreviate it as "EMST". They may also be called "geometric minimum spanning trees", but that term may be used more generally for geometric spaces with non-Euclidean distances, such as Lp spaces. When the context of Euclidean point sets is clear, they may be called simply "minimum spanning trees".
Several other standard geometric networks are closely related to the Euclidean minimum spanning tree:
Whenever two edges of a Euclidean minimum spanning tree meet at a vertex, they must form an angle of 60° or more, with equality only when they form two sides of an equilateral triangle. This is because, for two edges forming any sharper angle, one of the two edges could be replaced by the third, shorter edge of the triangle they form, forming a tree with smaller total length. In comparison, the Steiner tree problem has a stronger angle bound: an optimal Steiner tree has all angles at least 120°.
For points generated at random from a given continuous distribution, the minimum spanning tree is almost surely unique. The numbers of vertices of any given degree converge, for large number of vertices, to a constant times that number of vertices. The values of these constants depend on the degree and the distribution. However, even for simple cases—such as the number of leaves for points uniformly distributed in a unit square—their precise values are not known.
For any edge
u
v
{\displaystyle uv}
of any Euclidean minimum spanning tree, the lens (or vesica piscis) formed by intersecting the two circles with
u
v
{\displaystyle uv}
as their radii cannot have any other given vertex
w
{\displaystyle w}
in its interior. Put another way, if any tree has an edge
u
v
{\displaystyle uv}
whose lens contains a third point
w
{\displaystyle w}
, then it is not of minimum length. For, by the geometry of the two circles,
w
{\displaystyle w}
would be closer to both
u
{\displaystyle u}
and
v
{\displaystyle v}
than they are to each other. If edge
u
v
{\displaystyle uv}
were removed from the tree,
w
{\displaystyle w}
would remain connected to one of
u
{\displaystyle u}
and
v
{\displaystyle v}
, but not the other. Replacing the removed edge
u
v
{\displaystyle uv}
by
u
w
{\displaystyle uw}
or
v
w
{\displaystyle vw}
(whichever of these two edges reconnects
w
{\displaystyle w}
to the vertex from which it was disconnected) would produce a shorter tree.
For any edge
u
v
{\displaystyle uv}
of any Euclidean minimum spanning tree, the rhombus with angles of 60° and 120°, having
u
v
{\displaystyle uv}
as its long diagonal, is disjoint from the rhombi formed analogously by all other edges. Two edges sharing an endpoint cannot have overlapping rhombi, because that would imply an edge angle sharper than 60°, and two disjoint edges cannot have overlapping rhombi; if they did, the longer of the two edges could be replaced by a shorter edge among the same four vertices.
Because the empty-region criteria for these graphs are progressively weaker, these graphs form an ordered sequence of subgraphs. That is, using "⊆" to denote the subset relationship among their edges, these graphs have the relations:
Euclidean minimum spanning tree ⊆ relative neighborhood graph ⊆ Urquhart graph ⊆ Gabriel graph ⊆ Delaunay triangulation.
For
n
{\displaystyle n}
points in the unit square (or any other fixed shape), the total length of the minimum spanning tree edges is
O
(
n
)
{\displaystyle O({\sqrt {n}})}
. Some sets of points, such as points evenly spaced in a
n
×
n
{\displaystyle {\sqrt {n}}\times {\sqrt {n}}}
grid, attain this bound. For points in a unit hypercube in
d
{\displaystyle d}
-dimensional space, the corresponding bound is
O
(
n
(
d
−
1
)
/
d
)
{\displaystyle O(n^{(d-1)/d})}
. The same bound applies to the expected total length of the minimum spanning tree for
n
{\displaystyle n}
points chosen uniformly and independently from a unit square or unit hypercube. Returning to the unit square, the sum of squared edge lengths of the minimum spanning tree is
O
(
1
)
{\displaystyle O(1)}
. This bound follows from the observation that the edges have disjoint rhombi, with area proportional to the edge lengths squared. The
O
(
n
)
{\displaystyle O({\sqrt {n}})}
bound on total length follows by application of the Cauchy–Schwarz inequality.
Another interpretation of these results is that the average edge length for any set of points in a unit square is
O
(
1
/
n
)
{\displaystyle O(1/{\sqrt {n}})}
, at most proportional to the spacing of points in a regular grid; and that for random points in a unit square the average length is proportional to
1
/
n
{\displaystyle 1/{\sqrt {n}}}
. However, in the random case, with high probability the longest edge has length approximately
log
n
π
n
,
{\displaystyle {\sqrt {\frac {\log n}{\pi n}}},}
longer than the average by a non-constant factor. With high probability, the longest edge forms a leaf of the spanning tree, and connects a point far from all the other points to its nearest neighbor. For large numbers of points, the distribution of the longest edge length around its expected value converges to a Gumbel distribution.
If every edge of a Euclidean minimum spanning tree is subdivided, by adding a new point at its midpoint, then the resulting tree is still a minimum spanning tree of the augmented point set. Repeating this subdivision process allows a Euclidean minimum spanning tree to be subdivided arbitrarily finely. However, subdividing only some of the edges, or subdividing the edges at points other than the midpoint, may produce a point set for which the subdivided tree is not the minimum spanning tree.
For points in any dimension, the minimum spanning tree can be constructed in time
O
(
n
2
)
{\displaystyle O(n^{2})}
by constructing a complete graph with an edge between every pair of points, weighted by Euclidean distance, and then applying a graph minimum spanning tree algorithm such as the Prim–Dijkstra–Jarník algorithm or Borůvka's algorithm on it. These algorithms can be made to take time
O
(
n
2
)
{\displaystyle O(n^{2})}
on complete graphs, unlike another common choice, Kruskal's algorithm, which is slower because it involves sorting all distances. For points in low-dimensional spaces, the problem may be solved more quickly, as detailed below.
A faster approach to finding the minimum spanning tree of planar points uses the property that it is a subgraph of the Delaunay triangulation:
The result is an algorithm taking
O
(
n
log
n
)
{\displaystyle O(n\log n)}
time, optimal in certain models of computation (see below).
The problem can also be generalized to
n
{\displaystyle n}
points in the
d
{\displaystyle d}
-dimensional space
R
d
{\displaystyle \mathbb {R} ^{d}}
. In higher dimensions, the connectivity determined by the Delaunay triangulation (which, likewise, partitions the convex hull into
d
{\displaystyle d}
-dimensional simplices) contains the minimum spanning tree; however, the triangulation might contain the complete graph. Therefore, finding the Euclidean minimum spanning tree as a spanning tree of the complete graph or as a spanning tree of the Delaunay triangulation both take
O
(
d
n
2
)
{\displaystyle O(dn^{2})}
time. For three dimensions the minimum spanning tree can be found in time
O
(
(
n
log
n
)
4
/
3
)
{\displaystyle O{\bigl (}(n\log n)^{4/3}{\bigr )}}
, and in any greater dimension, in time
O
(
n
2
−
2
⌈
d
/
2
⌉
+
1
+
ε
)
{\displaystyle O\left(n^{2-{\frac {2}{\lceil d/2\rceil +1}}+\varepsilon }\right)}
for any
ε
>
0
{\displaystyle \varepsilon >0}
—faster than the quadratic time bound for the complete graph and Delaunay triangulation algorithms.
The optimal time complexity for higher-dimensional minimum spanning trees remains unknown, but is closely related to the complexity of computing bichromatic closest pairs. In the bichromatic closest pair problem, the input is a set of points, given two different colors (say, red and blue). The output is a pair of a red point and a blue point with the minimum possible distance. This pair always forms one of the edges in the minimum spanning tree. Therefore, the bichromatic closest pair problem can be solved in the amount of time that it takes to construct a minimum spanning tree and scan its edges for the shortest red–blue edge. Conversely, for any red–blue coloring of any subset of a given set of points, the bichromatic closest pair produces one edge of the minimum spanning tree of the subset. By carefully choosing a sequence of colorings of subsets, and finding the bichromatic closest pair of each subproblem, the minimum spanning tree may be found in time proportional to the optimal time for finding bichromatic closest pairs for the same number of points, whatever that optimal time turns out to be.
The Euclidean minimum spanning tree has been generalized in many different ways to systems of moving or changing points:
An asymptotic lower bound of
Ω
(
n
log
n
)
{\displaystyle \Omega (n\log n)}
of the Euclidean minimum spanning tree problem can be established in restricted models of computation. These include the algebraic decision tree and algebraic computation tree models, in which the algorithm has access to the input points only through certain restricted primitives that perform simple algebraic computations on their coordinates. In these models, the closest pair of points problem requires
Ω
(
n
log
n
)
{\displaystyle \Omega (n\log n)}
time, but the closest pair is necessarily an edge of the minimum spanning tree, so the minimum spanning tree also requires this much time. Therefore, algorithms for constructing the planar minimum spanning tree in time
O
(
n
log
n
)
{\displaystyle O(n\log n)}
within this model, for instance by using the Delaunay triangulation, are optimal. However, these lower bounds do not apply to models of computation with integer point coordinates, in which bitwise operations and table indexing operations on those coordinates are permitted. In these models, faster algorithms are possible, as described above.
An obvious application of Euclidean minimum spanning trees is to find the cheapest network of wires or pipes to connect a set of places, assuming the links cost a fixed amount per unit length. The first publications on minimum spanning trees more generally concerned a geographic version of the problem, involving the design of an electrical grid for southern Moravia, and an application to minimizing wire lengths in circuits was described in 1957 by Loberman and Weinberger.
Minimum spanning trees have also been used to infer the shape of curves in the plane, given points sampled along the curve. For a smooth curve, sampled more finely than its local feature size, the minimum spanning tree will form a path connecting consecutive points along the curve. More generally, similar methods can recognize curves drawn in a dotted or dashed style rather than as a single connected set. Applications of this curve-finding technique include particle physics, in automatically identifying the tracks left by particles in a bubble chamber. More sophisticated versions of this idea can find curves from a cloud of noisy sample points that roughly follows the curve outline, by using the topology of the spanning tree to guide a moving least squares method.
Gower, J. C.; Ross, G. J. S. (1969), "Minimum spanning trees and single linkage cluster analysis", Applied Statistics, 18 (1): 54–61, doi:10.2307/2346439, JSTOR 2346439, MR 0242315 /wiki/Doi_(identifier)
Shamos, Michael Ian; Hoey, Dan (1975), "Closest-point problems", 16th Annual Symposium on Foundations of Computer Science, Berkeley, California, USA, October 13-15, 1975, IEEE Computer Society, pp. 151–162, doi:10.1109/SFCS.1975.8, MR 0426498, S2CID 40615455 /wiki/Michael_Ian_Shamos
Bose, Prosenjit; Devroye, Luc; Evans, William; Kirkpatrick, David (2006), "On the spanning ratio of Gabriel graphs and β-skeletons", SIAM Journal on Discrete Mathematics, 20 (2): 412–427, doi:10.1137/S0895480197318088, MR 2257270 /wiki/Jit_Bose
Agarwal, P. K.; Edelsbrunner, H.; Schwarzkopf, O.; Welzl, E. (1991), "Euclidean minimum spanning trees and bichromatic closest pairs", Discrete & Computational Geometry, 6 (1), Springer: 407–422, doi:10.1007/BF02574698, MR 1115099 /wiki/Pankaj_K._Agarwal
March, William B.; Ram, Parikshit; Gray, Alexander G. (2010), "Fast Euclidean minimum spanning tree: algorithm, analysis, and applications", in Rao, Bharat; Krishnapuram, Balaji; Tomkins, Andrew; Yang, Qiang (eds.), Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, July 25-28, 2010, pp. 603–612, doi:10.1145/1835804.1835882, S2CID 186025 /wiki/Doi_(identifier)
Clarkson, Kenneth L. (1989), "An algorithm for geometric minimum spanning trees requiring nearly linear expected time", Algorithmica, 4 (1–4): 461–469, doi:10.1007/BF01553902, MR 1019387, S2CID 22176641 /wiki/Kenneth_L._Clarkson
Monma, Clyde; Suri, Subhash (1992), "Transitions in geometric minimum spanning trees", Discrete & Computational Geometry, 8 (3): 265–293, doi:10.1007/BF02293049, MR 1174358, S2CID 30101649 /wiki/Subhash_Suri
Narasimhan, Giri; Zachariasen, Martin; Zhu, Jianlin (2000), "Experiments with computing geometric minimum spanning trees", Proceedings of the 2nd Workshop on Algorithm Engineering and Experiments, pp. 183–196
Frati, Fabrizio; Kaufmann, Michael (2011), "Polynomial area bounds for MST embeddings of trees", Computational Geometry: Theory and Applications, 44 (9): 529–543, doi:10.1016/j.comgeo.2011.05.005, MR 2819643, S2CID 5634139 /wiki/Computational_Geometry_(journal)
King, James A. (2006), "Realization of degree 10 minimum spanning trees in 3-space" (PDF), Proceedings of the 18th Annual Canadian Conference on Computational Geometry, CCCG 2006, August 14-16, 2006, Queen's University, Ontario, Canada, pp. 39–42 https://www.cs.queensu.ca/cccg/papers/cccg11.pdf
Krznaric, Drago; Levcopoulos, Christos; Nilsson, Bengt J. (1999), "Minimum spanning trees in
d
{\displaystyle d}
dimensions", Nordic Journal of Computing, 6 (4): 446–461, MR 1736451. This version of this paper is not available online; instead, see the 1997 conference version of the same paper, doi:10.1007/3-540-63397-9_26. /wiki/MR_(identifier)
Gilbert, E. N.; Pollak, H. O. (1968), "Steiner minimal trees", SIAM Journal on Applied Mathematics, 16 (1): 1–29, doi:10.1137/0116001, JSTOR 2099400, MR 0223269 /wiki/Edgar_Gilbert
Shamos, Michael Ian; Hoey, Dan (1975), "Closest-point problems", 16th Annual Symposium on Foundations of Computer Science, Berkeley, California, USA, October 13-15, 1975, IEEE Computer Society, pp. 151–162, doi:10.1109/SFCS.1975.8, MR 0426498, S2CID 40615455 /wiki/Michael_Ian_Shamos
Eppstein, David (1999), "Spanning trees and spanners" (PDF), in Sack, J.-R.; Urrutia, J. (eds.), Handbook of Computational Geometry, Elsevier, pp. 425–461, MR 1746681 /wiki/David_Eppstein
Georgakopoulos, George; Papadimitriou, Christos H. (1987), "The 1-Steiner tree problem", Journal of Algorithms, 8 (1): 122–130, doi:10.1016/0196-6774(87)90032-0, MR 0875330 /wiki/Christos_Papadimitriou
Gilbert, E. N.; Pollak, H. O. (1968), "Steiner minimal trees", SIAM Journal on Applied Mathematics, 16 (1): 1–29, doi:10.1137/0116001, JSTOR 2099400, MR 0223269 /wiki/Edgar_Gilbert
Robins, G.; Salowe, J. S. (1995), "Low-degree minimum spanning trees", Discrete & Computational Geometry, 14 (2): 151–165, doi:10.1007/BF02570700, MR 1331924, S2CID 16040977 /wiki/Discrete_%26_Computational_Geometry
Monma, Clyde; Suri, Subhash (1992), "Transitions in geometric minimum spanning trees", Discrete & Computational Geometry, 8 (3): 265–293, doi:10.1007/BF02293049, MR 1174358, S2CID 30101649 /wiki/Subhash_Suri
Robins, G.; Salowe, J. S. (1995), "Low-degree minimum spanning trees", Discrete & Computational Geometry, 14 (2): 151–165, doi:10.1007/BF02570700, MR 1331924, S2CID 16040977 /wiki/Discrete_%26_Computational_Geometry
Pfender, Florian; Ziegler, Günter M. (September 2004), "Kissing numbers, sphere packings, and some unexpected proofs" (PDF), Notices of the American Mathematical Society: 873–883 /wiki/G%C3%BCnter_M._Ziegler
Steele, J. Michael; Shepp, Lawrence A.; Eddy, William F. (1987), "On the number of leaves of a Euclidean minimal spanning tree", Journal of Applied Probability, 24 (4): 809–826, doi:10.2307/3214207, JSTOR 3214207, MR 0913823, S2CID 29026025 /wiki/J._Michael_Steele
Gilbert, E. N.; Pollak, H. O. (1968), "Steiner minimal trees", SIAM Journal on Applied Mathematics, 16 (1): 1–29, doi:10.1137/0116001, JSTOR 2099400, MR 0223269 /wiki/Edgar_Gilbert
Gilbert, E. N.; Pollak, H. O. (1968), "Steiner minimal trees", SIAM Journal on Applied Mathematics, 16 (1): 1–29, doi:10.1137/0116001, JSTOR 2099400, MR 0223269 /wiki/Edgar_Gilbert
Preparata, Franco P.; Shamos, Michael Ian (1985), Computational Geometry: An Introduction, Texts and Monographs in Computer Science, Springer-Verlag, New York, p. 263, doi:10.1007/978-1-4612-1098-6, ISBN 0-387-96131-3, MR 0805539, S2CID 206656565 0-387-96131-3
Toussaint, G. T. (1980), "Comment: Algorithms for computing relative neighborhood graph", Electronics Letters, 16 (22): 860, Bibcode:1980ElL....16..860T, doi:10.1049/el:19800611; reply by Urquhart, pp. 860–861 /wiki/Godfried_Toussaint
Yao, Andrew Chi Chih (1982), "On constructing minimum spanning trees in k-dimensional spaces and related problems", SIAM Journal on Computing, 11 (4): 721–736, doi:10.1137/0211059, MR 0677663 /wiki/Andrew_Yao
Bentley, Jon Louis; Weide, Bruce W.; Yao, Andrew C. (1980), "Optimal expected-time algorithms for closest point problems", ACM Transactions on Mathematical Software, 6 (4): 563–580, doi:10.1145/355921.355927, MR 0599977, S2CID 17238717 /wiki/Jon_Bentley_(computer_scientist)
Gilbert, E. N.; Pollak, H. O. (1968), "Steiner minimal trees", SIAM Journal on Applied Mathematics, 16 (1): 1–29, doi:10.1137/0116001, JSTOR 2099400, MR 0223269 /wiki/Edgar_Gilbert
Steele, J. Michael; Snyder, Timothy Law (1989), "Worst-case growth rates of some classical problems of combinatorial optimization", SIAM Journal on Computing, 18 (2): 278–287, doi:10.1137/0218019, MR 0986667 /wiki/J._Michael_Steele
Steele, J. Michael (1988), "Growth rates of Euclidean minimal spanning trees with power weighted edges", Annals of Probability, 16 (4): 1767–1787, doi:10.1214/aop/1176991596, JSTOR 2243991, MR 0958215 /wiki/J._Michael_Steele
Gilbert, E. N.; Pollak, H. O. (1968), "Steiner minimal trees", SIAM Journal on Applied Mathematics, 16 (1): 1–29, doi:10.1137/0116001, JSTOR 2099400, MR 0223269 /wiki/Edgar_Gilbert
Penrose, Mathew D. (1997), "The longest edge of the random minimal spanning tree", The Annals of Applied Probability, 7 (2): 340–361, doi:10.1214/aoap/1034625335, MR 1442317 /wiki/Doi_(identifier)
Eppstein, David (1999), "Spanning trees and spanners" (PDF), in Sack, J.-R.; Urrutia, J. (eds.), Handbook of Computational Geometry, Elsevier, pp. 425–461, MR 1746681 /wiki/David_Eppstein
Gilbert, E. N.; Pollak, H. O. (1968), "Steiner minimal trees", SIAM Journal on Applied Mathematics, 16 (1): 1–29, doi:10.1137/0116001, JSTOR 2099400, MR 0223269 /wiki/Edgar_Gilbert
Boyce, W. M.; Garey, M. R.; Johnson, D. S. (1978), "A note on bisecting minimum spanning trees", Networks, 8 (3): 187–192, doi:10.1002/net.3230080302, MR 0491324 /wiki/Michael_Garey
Eppstein, David (1999), "Spanning trees and spanners" (PDF), in Sack, J.-R.; Urrutia, J. (eds.), Handbook of Computational Geometry, Elsevier, pp. 425–461, MR 1746681 /wiki/David_Eppstein
Yao, Andrew Chi Chih (1982), "On constructing minimum spanning trees in k-dimensional spaces and related problems", SIAM Journal on Computing, 11 (4): 721–736, doi:10.1137/0211059, MR 0677663 /wiki/Andrew_Yao
Shamos, Michael Ian; Hoey, Dan (1975), "Closest-point problems", 16th Annual Symposium on Foundations of Computer Science, Berkeley, California, USA, October 13-15, 1975, IEEE Computer Society, pp. 151–162, doi:10.1109/SFCS.1975.8, MR 0426498, S2CID 40615455 /wiki/Michael_Ian_Shamos
Buchin, Kevin; Mulzer, Wolfgang (2011), "Delaunay triangulations in O(sort(n)) time and more", Journal of the ACM, 58 (2): A6:1–A6:27, doi:10.1145/1944345.1944347, MR 2786587, S2CID 11316974 /wiki/Journal_of_the_ACM
Eppstein, David (1999), "Spanning trees and spanners" (PDF), in Sack, J.-R.; Urrutia, J. (eds.), Handbook of Computational Geometry, Elsevier, pp. 425–461, MR 1746681 /wiki/David_Eppstein
Mareš, Martin (2004), "Two linear time algorithms for MST on minor closed graph classes" (PDF), Archivum Mathematicum, 40 (3): 315–320, MR 2107027 https://www.emis.de/journals/AM/04-3/am1139.pdf
Buchin, Kevin; Mulzer, Wolfgang (2011), "Delaunay triangulations in O(sort(n)) time and more", Journal of the ACM, 58 (2): A6:1–A6:27, doi:10.1145/1944345.1944347, MR 2786587, S2CID 11316974 /wiki/Journal_of_the_ACM
Devillers, Olivier (1992), "Randomization yields simple O(n log* n) algorithms for difficult Ω(n) problems" (PDF), International Journal of Computational Geometry & Applications, 2 (1): 97–111, doi:10.1142/S021819599200007X, MR 1159844, S2CID 60203 https://hal.inria.fr/inria-00167206/file/hal.pdf
Agarwal, P. K.; Edelsbrunner, H.; Schwarzkopf, O.; Welzl, E. (1991), "Euclidean minimum spanning trees and bichromatic closest pairs", Discrete & Computational Geometry, 6 (1), Springer: 407–422, doi:10.1007/BF02574698, MR 1115099 /wiki/Pankaj_K._Agarwal
Agarwal, P. K.; Edelsbrunner, H.; Schwarzkopf, O.; Welzl, E. (1991), "Euclidean minimum spanning trees and bichromatic closest pairs", Discrete & Computational Geometry, 6 (1), Springer: 407–422, doi:10.1007/BF02574698, MR 1115099 /wiki/Pankaj_K._Agarwal
O'Rourke, J.; Demaine, E. (2001–2002), "Problem 5: Euclidean Minimum Spanning Tree", The Open Problems Project, Smith College /wiki/Joseph_O%27Rourke_(professor)
Agarwal, P. K.; Edelsbrunner, H.; Schwarzkopf, O.; Welzl, E. (1991), "Euclidean minimum spanning trees and bichromatic closest pairs", Discrete & Computational Geometry, 6 (1), Springer: 407–422, doi:10.1007/BF02574698, MR 1115099 /wiki/Pankaj_K._Agarwal
Krznaric, Drago; Levcopoulos, Christos; Nilsson, Bengt J. (1999), "Minimum spanning trees in
d
{\displaystyle d}
dimensions", Nordic Journal of Computing, 6 (4): 446–461, MR 1736451. This version of this paper is not available online; instead, see the 1997 conference version of the same paper, doi:10.1007/3-540-63397-9_26. /wiki/MR_(identifier)
Yao, Andrew Chi Chih (1982), "On constructing minimum spanning trees in k-dimensional spaces and related problems", SIAM Journal on Computing, 11 (4): 721–736, doi:10.1137/0211059, MR 0677663 /wiki/Andrew_Yao
Bentley, Jon Louis; Weide, Bruce W.; Yao, Andrew C. (1980), "Optimal expected-time algorithms for closest point problems", ACM Transactions on Mathematical Software, 6 (4): 563–580, doi:10.1145/355921.355927, MR 0599977, S2CID 17238717 /wiki/Jon_Bentley_(computer_scientist)
Clarkson, Kenneth L. (1989), "An algorithm for geometric minimum spanning trees requiring nearly linear expected time", Algorithmica, 4 (1–4): 461–469, doi:10.1007/BF01553902, MR 1019387, S2CID 22176641 /wiki/Kenneth_L._Clarkson
Dwyer, Rex A. (1991), "Higher-dimensional Voronoi diagrams in linear expected time", Discrete & Computational Geometry, 6 (4): 343–367, doi:10.1007/BF02574694, MR 1098813 /wiki/Discrete_%26_Computational_Geometry
Karger, David R.; Klein, Philip N.; Tarjan, Robert E. (1995), "A randomized linear-time algorithm to find minimum spanning trees", Journal of the ACM, 42 (2): 321–328, doi:10.1145/201019.201022, MR 1409738, S2CID 832583 /wiki/David_Karger
Narasimhan, Giri; Zachariasen, Martin; Zhu, Jianlin (2000), "Experiments with computing geometric minimum spanning trees", Proceedings of the 2nd Workshop on Algorithm Engineering and Experiments, pp. 183–196
Chatterjee, S.; Connor, M.; Kumar, P. (2010), "Geometric minimum spanning trees with GeoFilterKruskal", in Festa, Paola (ed.), Experimental Algorithms: 9th International Symposium, SEA 2010, Ischia Island, Naples, Italy, May 20-22, 2010, Proceedings, Lecture Notes in Computer Science, vol. 6049, Springer-Verlag, pp. 486–500, doi:10.1007/978-3-642-13193-6_41, ISBN 978-3-642-13192-9 978-3-642-13192-9
March, William B.; Ram, Parikshit; Gray, Alexander G. (2010), "Fast Euclidean minimum spanning tree: algorithm, analysis, and applications", in Rao, Bharat; Krishnapuram, Balaji; Tomkins, Andrew; Yang, Qiang (eds.), Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, July 25-28, 2010, pp. 603–612, doi:10.1145/1835804.1835882, S2CID 186025 /wiki/Doi_(identifier)
Arya, Sunil; Mount, David M. (2016), "A fast and simple algorithm for computing approximate Euclidean minimum spanning trees", in Krauthgamer, Robert (ed.), Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pp. 1220–1233, doi:10.1137/1.9781611974331.ch85, ISBN 978-1-61197-433-1, MR 3478461 978-1-61197-433-1
Eppstein, David (1994), "Offline algorithms for dynamic minimum spanning tree problems", Journal of Algorithms, 17 (2): 237–250, doi:10.1006/jagm.1994.1033, MR 1291541 /wiki/David_Eppstein
Chan, Timothy M. (2010), "A dynamic data structure for 3-D convex hulls and 2-D nearest neighbor queries", Journal of the ACM, 57 (3): Article 16, doi:10.1145/1706591.1706596, MR 2665885, S2CID 47454142 /wiki/Timothy_M._Chan
Eppstein, David (1995), "Dynamic Euclidean minimum spanning trees and extrema of binary functions", Discrete & Computational Geometry, 13 (1): 111–122, doi:10.1007/BF02574030, MR 1300511, S2CID 7339165 /wiki/David_Eppstein
Katoh, N.; Tokuyama, T.; Iwano, K. (1995), "On minimum and maximum spanning trees of linearly moving points", Discrete & Computational Geometry, 13 (2): 161–176, doi:10.1007/BF02574035, MR 1314960 /wiki/Discrete_%26_Computational_Geometry
Chan, Timothy M. (2003), "On levels in arrangements of curves", Discrete & Computational Geometry, 29 (3): 375–393, doi:10.1007/s00454-002-2840-2, MR 1961005, S2CID 18966889 /wiki/Timothy_M._Chan
Rahmati, Zahed; Zarei, Alireza (2010), "Combinatorial changes of Euclidean minimum spanning tree of moving points in the plane" (PDF), Proceedings of the 22nd Annual Canadian Conference on Computational Geometry, Winnipeg, Manitoba, Canada, August 9-11, 2010, pp. 43–45 https://cccg.ca/proceedings/2010/paper14.pdf
Akitaya, Hugo A.; Biniaz, Ahmad; Bose, Prosenjit; De Carufel, Jean-Lou; Maheshwari, Anil; da Silveira, Luís Fernando Schultz Xavier; Smid, Michiel (2021), "The minimum moving spanning tree problem", in Lubiw, Anna; Salavatipour, Mohammad R. (eds.), Algorithms and Data Structures: 17th International Symposium, WADS 2021, Virtual Event, August 9–11, 2021, Proceedings, Lecture Notes in Computer Science, vol. 12808, Springer, pp. 15–28, doi:10.1007/978-3-030-83508-8_2, ISBN 978-3-030-83507-1, S2CID 234599877 978-3-030-83507-1
Basch, Julien; Guibas, Leonidas J.; Zhang, Li (1997), "Proximity problems on moving points", in Boissonnat, Jean-Daniel (ed.), Proceedings of the Thirteenth Annual Symposium on Computational Geometry, Nice, France, June 4–6, 1997, Association for Computing Machinery, pp. 344–351, doi:10.1145/262839.262998, ISBN 0-89791-878-9, S2CID 15556637 0-89791-878-9
Agarwal, Pankaj K.; Eppstein, David; Guibas, Leonidas J.; Henzinger, Monika Rauch (1998), "Parametric and Kinetic Minimum Spanning Trees", 39th Annual Symposium on Foundations of Computer Science, FOCS '98, November 8–11, 1998, Palo Alto, California, USA (PDF), IEEE Computer Society, pp. 596–605, doi:10.1109/SFCS.1998.743510, ISBN 0-8186-9172-7, S2CID 2559456 0-8186-9172-7
Rahmati, Zahed; Zarei, Alireza (2012), "Kinetic Euclidean minimum spanning tree in the plane", Journal of Discrete Algorithms, 16: 2–11, doi:10.1016/j.jda.2012.04.009, MR 2960341 /wiki/Doi_(identifier)
Rahmati, Zahed; Abam, Mohammad Ali; King, Valerie; Whitesides, Sue; Zarei, Alireza (2015), "A simple, faster method for kinetic proximity problems", Computational Geometry: Theory & Applications, 48 (4): 342–359, arXiv:1311.2032, doi:10.1016/j.comgeo.2014.12.002, MR 3296072, S2CID 18971251 /wiki/Valerie_King
Meulemans, Wouter; Speckmann, Bettina; Verbeek, Kevin; Wulms, Jules (2018), "A framework for algorithm stability and its application to kinetic Euclidean MSTs", in Bender, Michael A.; Farach-Colton, Martin; Mosteiro, Miguel A. (eds.), LATIN 2018: Theoretical Informatics – 13th Latin American Symposium, Buenos Aires, Argentina, April 16–19, 2018, Proceedings, Lecture Notes in Computer Science, vol. 10807, Springer, pp. 805–819, doi:10.1007/978-3-319-77404-6_58, ISBN 978-3-319-77403-9, S2CID 4709616 978-3-319-77403-9
Rahmati, Zahed; Abam, Mohammad Ali; King, Valerie; Whitesides, Sue; Zarei, Alireza (2015), "A simple, faster method for kinetic proximity problems", Computational Geometry: Theory & Applications, 48 (4): 342–359, arXiv:1311.2032, doi:10.1016/j.comgeo.2014.12.002, MR 3296072, S2CID 18971251 /wiki/Valerie_King
Yao, Andrew Chi-Chih (1991), "Lower bounds for algebraic computation trees with integer inputs", SIAM Journal on Computing, 20 (4): 655–668, doi:10.1137/0220041, MR 1105929 /wiki/Andrew_Yao
Buchin, Kevin; Mulzer, Wolfgang (2011), "Delaunay triangulations in O(sort(n)) time and more", Journal of the ACM, 58 (2): A6:1–A6:27, doi:10.1145/1944345.1944347, MR 2786587, S2CID 11316974 /wiki/Journal_of_the_ACM
Graham, R. L.; Hell, Pavol (1985), "On the history of the minimum spanning tree problem", IEEE Annals of the History of Computing, 7 (1): 43–57, doi:10.1109/mahc.1985.10011, MR 0783327, S2CID 10555375 /wiki/Ronald_Graham
Loberman, H.; Weinberger, A. (October 1957), "Formal procedures for connecting terminals with a minimum total wire length", Journal of the ACM, 4 (4): 428–437, doi:10.1145/320893.320896, S2CID 7320964 /wiki/Journal_of_the_ACM
Gower, J. C.; Ross, G. J. S. (1969), "Minimum spanning trees and single linkage cluster analysis", Applied Statistics, 18 (1): 54–61, doi:10.2307/2346439, JSTOR 2346439, MR 0242315 /wiki/Doi_(identifier)
March, William B.; Ram, Parikshit; Gray, Alexander G. (2010), "Fast Euclidean minimum spanning tree: algorithm, analysis, and applications", in Rao, Bharat; Krishnapuram, Balaji; Tomkins, Andrew; Yang, Qiang (eds.), Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, July 25-28, 2010, pp. 603–612, doi:10.1145/1835804.1835882, S2CID 186025 /wiki/Doi_(identifier)
Wu, Bin; Yu, Bailang; Wu, Qiusheng; Chen, Zuoqi; Yao, Shenjun; Huang, Yan; Wu, Jianping (October 2017), "An extended minimum spanning tree method for characterizing local urban patterns", International Journal of Geographical Information Science, 32 (3): 450–475, doi:10.1080/13658816.2017.1384830, S2CID 46772272 /wiki/Doi_(identifier)
Zahn, C. T. (1973), "Using the minimum spanning tree to recognize dotted and dashed curves", 1st International Computing Symposium, Davos, Switzerland, 4–7 September 1973 https://cds.cern.ch/record/1050916
Lee, In-Kwon (2000), "Curve reconstruction from unorganized points", Computer Aided Geometric Design, 17 (2): 161–177, CiteSeerX 10.1.1.56.1432, doi:10.1016/S0167-8396(99)00044-8, MR 1733203 /wiki/CiteSeerX_(identifier)
Shamos, Michael Ian; Hoey, Dan (1975), "Closest-point problems", 16th Annual Symposium on Foundations of Computer Science, Berkeley, California, USA, October 13-15, 1975, IEEE Computer Society, pp. 151–162, doi:10.1109/SFCS.1975.8, MR 0426498, S2CID 40615455 /wiki/Michael_Ian_Shamos
Bartal, Yair; Gottlieb, Lee-Ad (2013), "A linear time approximation scheme for Euclidean TSP", 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pp. 698–706, CiteSeerX 10.1.1.409.1291, doi:10.1109/FOCS.2013.80, ISBN 978-0-7695-5135-7, MR 3246273, S2CID 17514182 978-0-7695-5135-7
Wan, P.-J.; Călinescu, G.; Li, X.-Y.; Frieder, O. (2002), "Minimum-energy broadcasting in static ad hoc wireless networks", Wireless Networks, 8 (6): 607–617, doi:10.1023/a:1020381720601, S2CID 1297518 /wiki/Doi_(identifier)
Clementi, Andrea E. F.; Huiban, Gurvan; Rossi, Gianluca; Verhoeven, Yann C.; Penna, Paolo (2003), "On the approximation ratio of the MST-based heuristic for the energy-efficient broadcast problem in static ad-hoc radio networks", 17th International Parallel and Distributed Processing Symposium (IPDPS 2003), 22-26 April 2003, Nice, France, Proceedings, IEEE Computer Society, p. 222, doi:10.1109/IPDPS.2003.1213407, ISBN 0-7695-1926-1, S2CID 17863487 0-7695-1926-1
Flammini, Michele; Klasing, Ralf; Navarra, Alfredo; Perennes, Stephane (2007), "Improved approximation results for the minimum energy broadcasting problem", Algorithmica, 49 (4): 318–336, doi:10.1007/s00453-007-9077-7, MR 2358524, S2CID 11982404 /wiki/Doi_(identifier)
Ambühl, Christoph (2005), "An optimal bound for the MST algorithm to compute energy efficient broadcast trees in wireless networks", in Caires, Luís; Italiano, Giuseppe F.; Monteiro, Luís; Palamidessi, Catuscia; Yung, Moti (eds.), Automata, Languages and Programming, 32nd International Colloquium, ICALP 2005, Lisbon, Portugal, July 11-15, 2005, Proceedings, Lecture Notes in Computer Science, vol. 3580, Springer, pp. 1139–1150, doi:10.1007/11523468_92, ISBN 978-3-540-27580-0 978-3-540-27580-0
Monma, Clyde; Suri, Subhash (1992), "Transitions in geometric minimum spanning trees", Discrete & Computational Geometry, 8 (3): 265–293, doi:10.1007/BF02293049, MR 1174358, S2CID 30101649 /wiki/Subhash_Suri
Eades, Peter; Whitesides, Sue (1996), "The realization problem for Euclidean minimum spanning trees is NP-hard", Algorithmica, 16 (1): 60–82, doi:10.1007/s004539900037, MR 1394494 /wiki/Peter_Eades
Monma, Clyde; Suri, Subhash (1992), "Transitions in geometric minimum spanning trees", Discrete & Computational Geometry, 8 (3): 265–293, doi:10.1007/BF02293049, MR 1174358, S2CID 30101649 /wiki/Subhash_Suri
King, James A. (2006), "Realization of degree 10 minimum spanning trees in 3-space" (PDF), Proceedings of the 18th Annual Canadian Conference on Computational Geometry, CCCG 2006, August 14-16, 2006, Queen's University, Ontario, Canada, pp. 39–42 https://www.cs.queensu.ca/cccg/papers/cccg11.pdf
Angelini, Patrizio; Bruckdorfer, Till; Chiesa, Marco; Frati, Fabrizio; Kaufmann, Michael; Squarcella, Claudio (2014), "On the area requirements of Euclidean minimum spanning trees", Computational Geometry: Theory and Applications, 47 (2, part B): 200–213, doi:10.1016/j.comgeo.2012.10.011, MR 3123788 /wiki/Computational_Geometry_(journal)
Frati, Fabrizio; Kaufmann, Michael (2011), "Polynomial area bounds for MST embeddings of trees", Computational Geometry: Theory and Applications, 44 (9): 529–543, doi:10.1016/j.comgeo.2011.05.005, MR 2819643, S2CID 5634139 /wiki/Computational_Geometry_(journal)