A common special case called two-way balanced partitioning is when there should be two subsets (m = 2). The two subsets should contain floor(n/2) and ceiling(n/2) items. It is a variant of the partition problem. It is NP-hard to decide whether there exists a partition in which the sums in the two subsets are equal; see problem [SP12]. There are many algorithms that aim to find a balanced partition in which the sum is as nearly-equal as possible.
Another special case called 3-partitioning is when the number of items in each subset should be at most 3 (k = 3). Deciding whether there exists such a partition with equal sums is exactly the 3-partition problem, which is known to be strongly NP-hard. There are approximation algorithms that aim to find a partition in which the sum is as nearly-equal as possible.
There are some general relations between approximations to the balanced partition problem and the standard (unconstrained) partition problem.
The cardinality constraints can be generalized by allowing a different constraint on each subset. This variant is introduced in the "open problems" section of, who call the ki-partitioning problem. He, Tan, Zhu and Yao present an algorithm called HARMONIC2 for maximizing the smallest sum with different cardinality constraints. They prove that its worst-case ratio is at least
max
(
1
k
m
,
k
1
k
m
1
⌈
∑
i
=
1
m
1
i
⌉
+
1
)
{\displaystyle \max \left({\frac {1}{k_{m}}},{\frac {k_{1}}{k_{m}}}{\frac {1}{\left\lceil \sum _{i=1}^{m}{\frac {1}{i}}\right\rceil +1}}\right)}
.
Another generalization of cardinality constraints is as follows. The input items are partitioned into k categories. For each category h, there is a capacity constraint kh. Each of the m subsets may contain at most kh items from category h. In other words: all m subsets should be independent set of a particular partition matroid. Two special cases of this problem have been studied.
Zhang, Jilian; Mouratidis, Kyriakos; Pang, HweeHwa (2011-06-28). "Heuristic Algorithms for Balanced Multi-Way Number Partitioning". Twenty-Second International Joint Conference on Artificial Intelligence. https://www.aaai.org/ocs/index.php/IJCAI/IJCAI11/paper/view/3251
Tsai, Li-Hui (1992-02-01). "Asymptotic Analysis of an Algorithm for Balanced Parallel Processor Scheduling". SIAM Journal on Computing. 21 (1): 59–64. doi:10.1137/0221007. ISSN 0097-5397. https://epubs.siam.org/doi/abs/10.1137/0221007
Dell'Amico, Mauro; Martello, Silvano (2001). "Bounds for the cardinality constrained P∥Cmax problem". Journal of Scheduling. 4 (3): 123–138. doi:10.1002/jos.68. ISSN 1099-1425. https://onlinelibrary.wiley.com/doi/abs/10.1002/jos.68
Garey, Michael; Johnson, David (1979). Computers and Intractability; A Guide to the Theory of NP-Completeness. pp. 96–105. ISBN 978-0-7167-1045-5. 978-0-7167-1045-5
Coffman, E. G.; Frederickson, G. N.; Lueker, G. S. (1984-05-01). "A Note on Expected Makespans for Largest-First Sequences of Independent Tasks on Two Processors". Mathematics of Operations Research. 9 (2): 260–266. doi:10.1287/moor.9.2.260. ISSN 0364-765X. https://pubsonline.informs.org/doi/abs/10.1287/moor.9.2.260
Tsai, Li-Hui (1992-02-01). "Asymptotic Analysis of an Algorithm for Balanced Parallel Processor Scheduling". SIAM Journal on Computing. 21 (1): 59–64. doi:10.1137/0221007. ISSN 0097-5397. https://epubs.siam.org/doi/abs/10.1137/0221007
Lueker, George S (1987-12-01). "A note on the average-case behavior of a simple differencing method for partitioning". Operations Research Letters. 6 (6): 285–287. doi:10.1016/0167-6377(87)90044-7. ISSN 0167-6377. https://dx.doi.org/10.1016/0167-6377%2887%2990044-7
Tsai, Li-Hui (1992-02-01). "Asymptotic Analysis of an Algorithm for Balanced Parallel Processor Scheduling". SIAM Journal on Computing. 21 (1): 59–64. doi:10.1137/0221007. ISSN 0097-5397. https://epubs.siam.org/doi/abs/10.1137/0221007
Yakir, Benjamin (1996-02-01). "The Differencing Algorithm LDM for Partitioning: A Proof of a Conjecture of Karmarkar and Karp". Mathematics of Operations Research. 21 (1): 85–99. doi:10.1287/moor.21.1.85. ISSN 0364-765X. https://pubsonline.informs.org/doi/abs/10.1287/moor.21.1.85
Mertens, Stephan (1999-03-11). "A complete anytime algorithm for balanced number partitioning". arXiv:cs/9903011. /wiki/ArXiv_(identifier)
Kellerer, Hans; Woeginger, Gerhard (1993-09-07). "A tight bound for 3-partitioning". Discrete Applied Mathematics. 45 (3): 249–259. doi:10.1016/0166-218X(93)90013-E. ISSN 0166-218X. https://doi.org/10.1016%2F0166-218X%2893%2990013-E
Chen, Shi Ping; He, Yong; Lin, Guohui (2002-03-01). "3-Partitioning Problems for Maximizing the Minimum Load". Journal of Combinatorial Optimization. 6 (1): 67–80. doi:10.1023/A:1013370208101. ISSN 1573-2886. S2CID 9053629. https://doi.org/10.1023/A:1013370208101
Kellerer, Hans; Kotov, Vladimir (1999-02-01). "A 7/6–Approximation Algorithm For 3-Partitioning And Its Application To Multiprocessor Scheduling". INFOR: Information Systems and Operational Research. 37 (1): 48–56. doi:10.1080/03155986.1999.11732368. ISSN 0315-5986. https://doi.org/10.1080/03155986.1999.11732368
Babel, Luitpold; Kellerer, Hans; Kotov, Vladimir (1998-02-01). "The k-partitioning problem". Mathematical Methods of Operations Research. 47 (1): 59–82. doi:10.1007/BF01193837. ISSN 1432-5217. S2CID 5594197. https://doi.org/10.1007/BF01193837
Babel, Luitpold; Kellerer, Hans; Kotov, Vladimir (1998-02-01). "The k-partitioning problem". Mathematical Methods of Operations Research. 47 (1): 59–82. doi:10.1007/BF01193837. ISSN 1432-5217. S2CID 5594197. https://doi.org/10.1007/BF01193837
Babel, Luitpold; Kellerer, Hans; Kotov, Vladimir (1998-02-01). "The k-partitioning problem". Mathematical Methods of Operations Research. 47 (1): 59–82. doi:10.1007/BF01193837. ISSN 1432-5217. S2CID 5594197. https://doi.org/10.1007/BF01193837
Kellerer, Hans; Woeginger, Gerhard (1993-09-07). "A tight bound for 3-partitioning". Discrete Applied Mathematics. 45 (3): 249–259. doi:10.1016/0166-218X(93)90013-E. ISSN 0166-218X. https://doi.org/10.1016%2F0166-218X%2893%2990013-E
Dell'Amico, Mauro; Martello, Silvano (2001). "Bounds for the cardinality constrained P∥Cmax problem". Journal of Scheduling. 4 (3): 123–138. doi:10.1002/jos.68. ISSN 1099-1425. https://onlinelibrary.wiley.com/doi/abs/10.1002/jos.68
Michiels, Wil; Korst, Jan; Aarts, Emile; van Leeuwen, Jan (2003), Performance Ratios for the Differencing Method Applied to the Balanced Number Partitioning Problem, Lecture Notes in Computer Science, vol. 2607, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 583–595, doi:10.1007/3-540-36494-3_51, ISBN 978-3-540-00623-7, retrieved 2021-10-15 978-3-540-00623-7
Michiels, W.; Aarts, E.; Korst, J.; van Leeuwen, J.; Spieksma, F. C. R. (2012-02-01). "Computer-assisted proof of performance ratios for the Differencing Method". Discrete Optimization. 9 (1): 1–16. doi:10.1016/j.disopt.2011.10.001. ISSN 1572-5286. https://doi.org/10.1016%2Fj.disopt.2011.10.001
Zhang, Jilian; Mouratidis, Kyriakos; Pang, HweeHwa (2011-06-28). "Heuristic Algorithms for Balanced Multi-Way Number Partitioning". Twenty-Second International Joint Conference on Artificial Intelligence. https://www.aaai.org/ocs/index.php/IJCAI/IJCAI11/paper/view/3251
Hochbaum, Dorit S.; Shmoys, David B. (1987-01-01). "Using dual approximation algorithms for scheduling problems theoretical and practical results". Journal of the ACM. 34 (1): 144–162. doi:10.1145/7531.7535. ISSN 0004-5411. S2CID 9739129. https://doi.org/10.1145%2F7531.7535
Michiels, W.; Aarts, E.; Korst, J.; van Leeuwen, J.; Spieksma, F. C. R. (2012-02-01). "Computer-assisted proof of performance ratios for the Differencing Method". Discrete Optimization. 9 (1): 1–16. doi:10.1016/j.disopt.2011.10.001. ISSN 1572-5286. https://doi.org/10.1016%2Fj.disopt.2011.10.001
Michiels, W.; Aarts, E.; Korst, J.; van Leeuwen, J.; Spieksma, F. C. R. (2012-02-01). "Computer-assisted proof of performance ratios for the Differencing Method". Discrete Optimization. 9 (1): 1–16. doi:10.1016/j.disopt.2011.10.001. ISSN 1572-5286. https://doi.org/10.1016%2Fj.disopt.2011.10.001
Dell'Amico, Mauro; Martello, Silvano (2001). "Bounds for the cardinality constrained P∥Cmax problem". Journal of Scheduling. 4 (3): 123–138. doi:10.1002/jos.68. ISSN 1099-1425. https://onlinelibrary.wiley.com/doi/abs/10.1002/jos.68
Babel, Luitpold; Kellerer, Hans; Kotov, Vladimir (1998-02-01). "The k-partitioning problem". Mathematical Methods of Operations Research. 47 (1): 59–82. doi:10.1007/BF01193837. ISSN 1432-5217. S2CID 5594197. https://doi.org/10.1007/BF01193837
He, Yong; Tan, Zhiyi; Zhu, Jing; Yao, Enyu (2003-11-01). "κ-Partitioning problems for maximizing the minimum load". Computers & Mathematics with Applications. 46 (10): 1671–1681. doi:10.1016/S0898-1221(03)90201-X. ISSN 0898-1221. https://doi.org/10.1016%2FS0898-1221%2803%2990201-X
Babel, Luitpold; Kellerer, Hans; Kotov, Vladimir (1998-02-01). "The k-partitioning problem". Mathematical Methods of Operations Research. 47 (1): 59–82. doi:10.1007/BF01193837. ISSN 1432-5217. S2CID 5594197. https://doi.org/10.1007/BF01193837
Kellerer, Hans; Kotov, Vladimir (1999-02-01). "A 7/6–Approximation Algorithm For 3-Partitioning And Its Application To Multiprocessor Scheduling". INFOR: Information Systems and Operational Research. 37 (1): 48–56. doi:10.1080/03155986.1999.11732368. ISSN 0315-5986. https://doi.org/10.1080/03155986.1999.11732368
Babel, Luitpold; Kellerer, Hans; Kotov, Vladimir (1998-02-01). "The k-partitioning problem". Mathematical Methods of Operations Research. 47 (1): 59–82. doi:10.1007/BF01193837. ISSN 1432-5217. S2CID 5594197. https://doi.org/10.1007/BF01193837
He, Yong; Tan, Zhiyi; Zhu, Jing; Yao, Enyu (2003-11-01). "κ-Partitioning problems for maximizing the minimum load". Computers & Mathematics with Applications. 46 (10): 1671–1681. doi:10.1016/S0898-1221(03)90201-X. ISSN 0898-1221. https://doi.org/10.1016%2FS0898-1221%2803%2990201-X
Chen, S. -P.; He, Y.; Yao, E. -Y. (1996-09-01). "Three-partitioning containing kernels: Complexity and heuristic". Computing. 57 (3): 255–271. doi:10.1007/bf02247409. ISSN 0010-485X. S2CID 21935917. https://link-springer-com.mgs.ariel.ac.il/article/10.1007/BF02247409
Chen, S. -P.; He, Y.; Yao, E. -Y. (1996-09-01). "Three-partitioning containing kernels: Complexity and heuristic". Computing. 57 (3): 255–271. doi:10.1007/bf02247409. ISSN 0010-485X. S2CID 21935917. https://link-springer-com.mgs.ariel.ac.il/article/10.1007/BF02247409
Chen, Shi Ping; He, Yong; Lin, Guohui (2002-03-01). "3-Partitioning Problems for Maximizing the Minimum Load". Journal of Combinatorial Optimization. 6 (1): 67–80. doi:10.1023/A:1013370208101. ISSN 1573-2886. S2CID 9053629. https://doi.org/10.1023/A:1013370208101
Wu, Biao; Yao, Enyue (2007-04-20). "m-Partitioning problems with partition matroid constraint". Theoretical Computer Science. 374 (1): 41–48. doi:10.1016/j.tcs.2006.11.016. ISSN 0304-3975. /wiki/Doi_(identifier)
Wu, Biao; Yao, En-yu (2008-03-01). "Lower bounds and modified LPT algorithm for m-partitioning problems with partition matroid constraint". Applied Mathematics-A Journal of Chinese Universities. 23 (1): 1–8. doi:10.1007/s11766-008-0101-8. ISSN 1993-0445. S2CID 16565038. https://doi.org/10.1007/s11766-008-0101-8
Li, Weidong; Li, Jianping (2013-04-06). "Approximation algorithms for $$m$$-partitioning problems with partition matroid constraint". Optimization Letters. 8 (3): 1093–1099. doi:10.1007/s11590-013-0637-2. ISSN 1862-4472. S2CID 3385030. https://link-springer-com.mgs.ariel.ac.il/article/10.1007/s11590-013-0637-2
Dell’Olmo, Paolo; Hansen, Pierre; Pallottino, Stefano; Storchi, Giovanni (2005-09-01). "On uniform k-partition problems". Discrete Applied Mathematics. 150 (1): 121–139. doi:10.1016/j.dam.2005.02.013. ISSN 0166-218X. /wiki/Doi_(identifier)