Approximate membership query filters (hereafter, AMQ filters) comprise a group of space-efficient probabilistic data structures that support approximate membership queries. An approximate membership query answers whether an element is in a set or not with a false positive rate of ϵ {\displaystyle \epsilon } .
Bloom filters are the most known AMQ filter, but there are other AMQ filters that support additional operations or have different space requirements.
AMQ filters have numerous applications, mainly in distributed systems and databases. There, they are often used to avoid network request or I/O operations that result from requesting elements that do not exist.