In mathematics, a functional equation [irrelevant citation] is, in the broadest meaning, an equation in which one or several functions appear as unknowns. So, differential equations and integral equations are functional equations. However, a more restricted meaning is often used, where a functional equation is an equation that relates several values of the same function. For example, the logarithm functions are essentially characterized by the logarithmic functional equation log ( x y ) = log ( x ) + log ( y ) . {\displaystyle \log(xy)=\log(x)+\log(y).}
If the domain of the unknown function is supposed to be the natural numbers, the function is generally viewed as a sequence, and, in this case, a functional equation (in the narrower meaning) is called a recurrence relation. Thus the term functional equation is used mainly for real functions and complex functions. Moreover a smoothness condition is often assumed for the solutions, since without such a condition, most functional equations have very irregular solutions. For example, the gamma function is a function that satisfies the functional equation f ( x + 1 ) = x f ( x ) {\displaystyle f(x+1)=xf(x)} and the initial value f ( 1 ) = 1. {\displaystyle f(1)=1.} There are many functions that satisfy these conditions, but the gamma function is the unique one that is meromorphic in the whole complex plane, and logarithmically convex for x real and positive (Bohr–Mollerup theorem).