The Hilbert–Huang transform (HHT) is a way to decompose a signal into so-called intrinsic mode functions (IMF) along with a trend, and obtain instantaneous frequency data. It is designed to work well for data that is nonstationary and nonlinear.
The Hilbert–Huang transform (HHT), a NASA designated name, was proposed by Norden E. Huang. It is the result of the empirical mode decomposition (EMD) and the Hilbert spectral analysis (HSA). The HHT uses the EMD method to decompose a signal into so-called intrinsic mode functions (IMF) with a trend, and applies the HSA method to the IMFs to obtain instantaneous frequency data. Since the signal is decomposed in time domain and the length of the IMFs is the same as the original signal, HHT preserves the characteristics of the varying frequency. This is an important advantage of HHT since a real-world signal usually has multiple causes happening in different time intervals. The HHT provides a new method of analyzing nonstationary and nonlinear time series data.