A cube or regular hexahedron is a three-dimensional solid object in geometry. It is an example of a polyhedron, having eight vertices connected with twelve straight edges of the same length, allowing them to form six equal-sized square faces. It is a type of parallelepiped with pairs of parallel opposite faces, and more specifically a rhombohedron with its edges has the same length, and a rectangular cuboid with right angles between pairs of intersecting faces and pairs of intersecting edges. It is an example of many classes of polyhedra: Platonic solid, regular polyhedron, parallelohedron, zonohedron, and plesiohedron. The dual polyhedron of a cube is the regular octahedron.
The cube can be represented in many ways, one of which is the graph known as the cubical graph. It can be constructed by using the Cartesian product of graphs. The cube is the three-dimensional hypercube, a family of polytopes also including the two-dimensional square and four-dimensional tesseract. A cube with unit side length is the canonical unit of volume in three-dimensional space, relative to which other solid objects are measured. Other related figures involve the construction of polyhedra, space-filling and honeycombs, polycubes, as well as cubes in compounds, spherical, and topological space.
The cube was discovered in antiquity, associated with the nature of earth by Plato, for whom the Platonic solids are named. It can be derived differently to create more polyhedra, and it has applications to construct a new polyhedron by attaching others. Other applications include popular culture of toys and games, arts, optical illusions, architectural buildings, as well as natural science and technology.