In complex analysis, a removable singularity of a holomorphic function is a point at which the function is undefined, but it is possible to redefine the function at that point in such a way that the resulting function is regular in a neighbourhood of that point.
For instance, the (unnormalized) sinc function, as defined by
has a singularity at z = 0. This singularity can be removed by defining sinc ( 0 ) := 1 , {\displaystyle {\text{sinc}}(0):=1,} which is the limit of sinc as z tends to 0. The resulting function is holomorphic. In this case the problem was caused by sinc being given an indeterminate form. Taking a power series expansion for sin ( z ) z {\textstyle {\frac {\sin(z)}{z}}} around the singular point shows that
Formally, if U ⊂ C {\displaystyle U\subset \mathbb {C} } is an open subset of the complex plane C {\displaystyle \mathbb {C} } , a ∈ U {\displaystyle a\in U} a point of U {\displaystyle U} , and f : U ∖ { a } → C {\displaystyle f:U\setminus \{a\}\rightarrow \mathbb {C} } is a holomorphic function, then a {\displaystyle a} is called a removable singularity for f {\displaystyle f} if there exists a holomorphic function g : U → C {\displaystyle g:U\rightarrow \mathbb {C} } which coincides with f {\displaystyle f} on U ∖ { a } {\displaystyle U\setminus \{a\}} . We say f {\displaystyle f} is holomorphically extendable over U {\displaystyle U} if such a g {\displaystyle g} exists.