In mathematics, given a field F {\displaystyle \mathbb {F} } , non-negative integers m , n {\displaystyle m,n} , and a matrix A ∈ F m × n {\displaystyle A\in \mathbb {F} ^{m\times n}} , a rank decomposition or rank factorization of A is a factorization of A of the form A = CF, where C ∈ F m × r {\displaystyle C\in \mathbb {F} ^{m\times r}} and F ∈ F r × n {\displaystyle F\in \mathbb {F} ^{r\times n}} , where r = rank A {\displaystyle r=\operatorname {rank} A} is the rank of A {\displaystyle A} .