In numerical analysis, the singular boundary method (SBM) belongs to a family of meshless boundary collocation techniques which include the method of fundamental solutions (MFS), boundary knot method (BKM), regularized meshless method (RMM), boundary particle method (BPM), modified MFS, and so on. This family of strong-form collocation methods is designed to avoid singular numerical integration and mesh generation in the traditional boundary element method (BEM) in the numerical solution of boundary value problems with boundary nodes, in which a fundamental solution of the governing equation is explicitly known.
The salient feature of the SBM is to overcome the fictitious boundary in the method of fundamental solution, while keeping all merits of the latter. The method offers several advantages over the classical domain or boundary discretization methods, among which are:
The SBM provides a significant and promising alternative to popular boundary-type methods such as the BEM and MFS, in particular, for infinite domain, wave, thin-walled structures, and inverse problems.