In the mathematical study of order, a metric lattice L is a lattice that admits a positive valuation: a function v ∈ L → ℝ satisfying, for any a, b ∈ L, v ( a ) + v ( b ) = v ( a ∧ b ) + v ( a ∨ b ) {\displaystyle v(a)+v(b)=v(a\wedge b)+v(a\vee b)} and a > b ⇒ v ( a ) > v ( b ) . {\displaystyle {a>b}\Rightarrow v(a)>v(b){\text{.}}}