In mathematics, the Gaussian binomial coefficients (also called Gaussian coefficients, Gaussian polynomials, or q-binomial coefficients) are q-analogs of the binomial coefficients. The Gaussian binomial coefficient, written as ( n k ) q {\displaystyle {\binom {n}{k}}_{q}} or [ n k ] q {\displaystyle {\begin{bmatrix}n\\k\end{bmatrix}}_{q}} , is a polynomial in q with integer coefficients, whose value when q is set to a prime power counts the number of subspaces of dimension k in a vector space of dimension n over F q {\displaystyle \mathbb {F} _{q}} , a finite field with q elements; i.e. it is the number of points in the finite Grassmannian G r ( k , F q n ) {\displaystyle \mathrm {Gr} (k,\mathbb {F} _{q}^{n})} .