In computational chemistry, a water model is used to simulate and thermodynamically calculate water clusters, liquid water, and aqueous solutions with explicit solvent, often using molecular dynamics or Monte Carlo methods. The models describe intermolecular forces between water molecules and are determined from quantum mechanics, molecular mechanics, experimental results, and these combinations. To imitate the specific nature of the intermolecular forces, many types of models have been developed. In general, these can be classified by the following three characteristics; (i) the number of interaction points or sites, (ii) whether the model is rigid or flexible, and (iii) whether the model includes polarization effects.
An alternative to the explicit water models is to use an implicit solvation model, also termed a continuum model. Examples of this type of model include the COSMO solvation model, the polarizable continuum model (PCM) and hybrid solvation models.