In statistics, the RV coefficient is a multivariate generalization of the squared Pearson correlation coefficient (because the RV coefficient takes values between 0 and 1). It measures the closeness of two set of points that may each be represented in a matrix.
The major approaches within statistical multivariate data analysis can all be brought into a common framework in which the RV coefficient is maximised subject to relevant constraints. Specifically, these statistical methodologies include:
One application of the RV coefficient is in functional neuroimaging where it can measure the similarity between two subjects' series of brain scans or between different scans of a same subject.