In knot theory, a petal projection of a knot is a knot diagram with a single crossing, at which an odd number of non-nested arcs ("petals") all meet. Because the above-below relation between the branches of a knot at this crossing point is not apparent from the appearance of the diagram, it must be specified separately, as a permutation describing the top-to-bottom ordering of the branches.
Every knot or link has a petal projection; the minimum number of petals in such a projection defines a knot invariant, the petal number of the knot. Petal projections can be used to define the Petaluma model, a family of probability distributions on knots with a given number of petals, defined by choosing a random permutation for the branches of a petal diagram.