In mathematics, a Schur-convex function, also known as S-convex, isotonic function and order-preserving function is a function f : R d → R {\displaystyle f:\mathbb {R} ^{d}\rightarrow \mathbb {R} } that for all x , y ∈ R d {\displaystyle x,y\in \mathbb {R} ^{d}} such that x {\displaystyle x} is majorized by y {\displaystyle y} , one has that f ( x ) ≤ f ( y ) {\displaystyle f(x)\leq f(y)} . Named after Issai Schur, Schur-convex functions are used in the study of majorization.
A function f is 'Schur-concave' if its negative, −f, is Schur-convex.