Name | Function | Marshallian Demand curve | Indirect utility | Indifference curves | Monotonicity | Convexity | Homothety | Good type | Example |
---|
Leontief | min ( x w x , y w y ) {\displaystyle \min \left({x \over w_{x}},{y \over w_{y}}\right)} | hyperbolic: I w x p x + w y p y {\displaystyle I \over w_{x}p_{x}+w_{y}p_{y}} | ? | L-shapes | Weak | Weak | Yes | Perfect complements | Left and right shoes |
Cobb–Douglas | x w x y w y {\displaystyle x^{w_{x}}y^{w_{y}}} | hyperbolic: w x w x + w y I p x {\displaystyle {\frac {w_{x}}{w_{x}+w_{y}}}{I \over p_{x}}} | I p x w x p y w y {\displaystyle I \over p_{x}^{w_{x}}p_{y}^{w_{y}}} | hyperbolic | Strong | Strong | Yes | Independent | Apples and socks |
Linear | x w x + y w y {\displaystyle {{x \over w_{x}}+{y \over w_{y}}}} | "Step function" correspondence: only goods with minimum w i p i {\displaystyle {w_{i}p_{i}}} are demanded | ? | Straight lines | Strong | Weak | Yes | Perfect substitutes | Potatoes of two different farms |
Quasilinear | x + u y ( y ) {\displaystyle x+u_{y}(y)} | Demand for y {\displaystyle y} is determined by: u y ′ ( y ) = p y / p x {\displaystyle u_{y}'(y)=p_{y}/p_{x}} | v ( p ) + I {\displaystyle v(p)+I} where v is a function of price only | Parallel curves | Strong, if u y {\displaystyle u_{y}} is increasing | Strong, if u y {\displaystyle u_{y}} is quasiconcave | No | Substitutes, if u y {\displaystyle u_{y}} is quasiconcave | Money ( x {\displaystyle x} ) and another product ( y {\displaystyle y} ) |
Maximum | ( x w x , y w y ) {\displaystyle \left({x \over w_{x}},{y \over w_{y}}\right)} | Discontinuous step function: only one good with minimum w i p i {\displaystyle {w_{i}p_{i}}} is demanded | ? | ר-shapes | Weak | Concave | Yes | Substitutes and interfering | Two simultaneous movies |
CES | ( ( x w x ) r + ( y w y ) r ) 1 / r {\displaystyle \left(\left({x \over w_{x}}\right)^{r}+\left({y \over w_{y}}\right)^{r}\right)^{1/r}} | See Marshallian demand function#Example | ? | Leontief, Cobb–Douglas, Linear and Maximum are special cases when r = − ∞ , 0 , 1 , ∞ {\displaystyle r=-\infty ,0,1,\infty } , respectively. |
Translog | w x ln x + w y ln y + w x y ln x ln y {\displaystyle w_{x}\ln {x}+w_{y}\ln {y}+w_{xy}\ln {x}\ln {y}} | ? | ? | Cobb–Douglas is a special case when w x y = 0 {\displaystyle w_{xy}=0} . |
Isoelastic | x w x + y w y {\displaystyle x^{w_{x}}+y^{w_{y}}} | ? | ? | ? | ? | ? | ? | ? | ? |