In category theory, a branch of mathematics, a monoidal monad ( T , η , μ , T A , B , T 0 ) {\displaystyle (T,\eta ,\mu ,T_{A,B},T_{0})} is a monad ( T , η , μ ) {\displaystyle (T,\eta ,\mu )} on a monoidal category ( C , ⊗ , I ) {\displaystyle (C,\otimes ,I)} such that the functor T : ( C , ⊗ , I ) → ( C , ⊗ , I ) {\displaystyle T:(C,\otimes ,I)\to (C,\otimes ,I)} is a lax monoidal functor and the natural transformations η {\displaystyle \eta } and μ {\displaystyle \mu } are monoidal natural transformations. In other words, T {\displaystyle T} is equipped with coherence maps T A , B : T A ⊗ T B → T ( A ⊗ B ) {\displaystyle T_{A,B}:TA\otimes TB\to T(A\otimes B)} and T 0 : I → T I {\displaystyle T_{0}:I\to TI} satisfying certain properties (again: they are lax monoidal), and the unit η : i d ⇒ T {\displaystyle \eta :id\Rightarrow T} and multiplication μ : T 2 ⇒ T {\displaystyle \mu :T^{2}\Rightarrow T} are monoidal natural transformations. By monoidality of η {\displaystyle \eta } , the morphisms T 0 {\displaystyle T_{0}} and η I {\displaystyle \eta _{I}} are necessarily equal.
All of the above can be compressed into the statement that a monoidal monad is a monad in the 2-category M o n C a t {\displaystyle {\mathsf {MonCat}}} of monoidal categories, lax monoidal functors, and monoidal natural transformations.