In probability theory and statistics, the noncentral beta distribution is a continuous probability distribution that is a noncentral generalization of the (central) beta distribution.
The noncentral beta distribution (Type I) is the distribution of the ratio
where χ m 2 ( λ ) {\displaystyle \chi _{m}^{2}(\lambda )} is a noncentral chi-squared random variable with degrees of freedom m and noncentrality parameter λ {\displaystyle \lambda } , and χ n 2 {\displaystyle \chi _{n}^{2}} is a central chi-squared random variable with degrees of freedom n, independent of χ m 2 ( λ ) {\displaystyle \chi _{m}^{2}(\lambda )} . In this case, X ∼ Beta ( m 2 , n 2 , λ ) {\displaystyle X\sim {\mbox{Beta}}\left({\frac {m}{2}},{\frac {n}{2}},\lambda \right)}
A Type II noncentral beta distribution is the distribution of the ratio
where the noncentral chi-squared variable is in the denominator only. If Y {\displaystyle Y} follows the type II distribution, then X = 1 − Y {\displaystyle X=1-Y} follows a type I distribution.