In mathematical analysis, the initial value theorem is a theorem used to relate frequency domain expressions to the time domain behavior as time approaches zero.
Let
be the (one-sided) Laplace transform of ƒ(t). If f {\displaystyle f} is bounded on ( 0 , ∞ ) {\displaystyle (0,\infty )} (or if just f ( t ) = O ( e c t ) {\displaystyle f(t)=O(e^{ct})} ) and lim t → 0 + f ( t ) {\displaystyle \lim _{t\to 0^{+}}f(t)} exists then the initial value theorem says