In computational complexity theory, Yao's principle (also called Yao's minimax principle or Yao's lemma) relates the performance of randomized algorithms to deterministic (non-random) algorithms. It states that, for certain classes of algorithms, and certain measures of the performance of the algorithms, the following two quantities are equal:
Yao's principle is often used to prove limitations on the performance of randomized algorithms, by finding a probability distribution on inputs that is difficult for deterministic algorithms, and inferring that randomized algorithms have the same limitation on their worst case performance.
This principle is named after Andrew Yao, who first proposed it in a 1977 paper. It is closely related to the minimax theorem in the theory of zero-sum games, and to the duality theory of linear programs.