In mathematics, Birkhoff's representation theorem for distributive lattices states that the elements of any finite distributive lattice can be represented as finite sets, in such a way that the lattice operations correspond to unions and intersections of sets. Here, a lattice is an abstract structure with two binary operations, the "meet" and "join" operations, which must obey certain axioms; it is distributive if these two operations obey the distributive law. The union and intersection operations, in a family of sets that is closed under these operations, automatically form a distributive lattice, and Birkhoff's representation theorem states that (up to isomorphism) every finite distributive lattice can be formed in this way. It is named after Garrett Birkhoff, who published a proof of it in 1937.
The theorem can be interpreted as providing a one-to-one correspondence between distributive lattices and partial orders, between quasi-ordinal knowledge spaces and preorders, or between finite topological spaces and preorders.
The name “Birkhoff's representation theorem” has also been applied to two other results of Birkhoff, one from 1935 on the representation of Boolean algebras as families of sets closed under union, intersection, and complement (so-called fields of sets, closely related to the rings of sets used by Birkhoff to represent distributive lattices), and Birkhoff's HSP theorem representing algebras as products of irreducible algebras. Birkhoff's representation theorem has also been called the fundamental theorem for finite distributive lattices.