In programming language theory, call-by-push-value (CBPV) is an intermediate language that embeds the call-by-value (CBV) and call-by-name (CBN) evaluation strategies. CBPV is structured as a polarized λ-calculus with two main types, "values" (+) and "computations" (-). Restrictions on interactions between the two types enforce a controlled order of evaluation, similar to monads or CPS. The calculus can embed computational effects, such as nontermination, mutable state, or nondeterminism. There are natural semantics-preserving translations from CBV and CBN into CBPV. This means that giving a CBPV semantics and proving its properties implicitly establishes CBV and CBN semantics and properties as well. Paul Blain Levy formulated and developed CBPV in several papers and his doctoral thesis.