A particle receiver is an object placed on the top of a solar tower on which surface solar energy is concentrated by means of a solar field composed of large number of mirrors, called heliostats. The goal is to transform solar energy into thermal energy that can be used in a heat process, thermochemical process, or in a heat engine to produce electricity in a solar tower power plant. To accomplish this, it is necessary to introduce certain material, called heat transfer medium, to the receiver that is then heated up, either directly or indirectly, by the concentrated solar energy before leaving the receiver at a higher temperature. Unlike receivers used in conventional concentrated solar power (CSP), power plants which employ molten salts as a heat transfer medium that is heated indirectly by flowing through the metal tubes that are exposed to the concentrated solar energy, particle receivers adopt solid particles which then can be heated either directly or indirectly, depending on the technology considered.
One of the main advantages of adopting particles as a heat transfer medium is the possibility of direct heating, where particles are exposed directly to the incoming solar radiation, thus avoiding issues related to non-uniform heating of receiver tubes. Also, the possibility to reach temperatures above 1000 °C allows for the adoption of Brayton cycle with supercritical CO2 as the working fluid which can achieve higher thermal efficiency compared to the steam Rankine cycle which is used in the conventional CSP power plants that have a maximum temperature limit of 565 °C due to issues related with the thermal stability of the molten salts.