Compound | Bowersacronym | Picture | Polyhedralcount | Polyhedral type | Faces | Edges | Vertices | Notes | Symmetry group | Subgrouprestrictingto oneconstituent |
---|
UC01 | sis | | 6 | tetrahedra | 24{3} | 36 | 24 | Rotational freedom | Td | S4 |
UC02 | dis | | 12 | tetrahedra | 48{3} | 72 | 48 | Rotational freedom | Oh | S4 |
UC03 | snu | | 6 | tetrahedra | 24{3} | 36 | 24 | | Oh | D2d |
UC04 | so | | 2 | tetrahedra | 8{3} | 12 | 8 | Regular | Oh | Td |
UC05 | ki | | 5 | tetrahedra | 20{3} | 30 | 20 | Regular | I | T |
UC06 | e | | 10 | tetrahedra | 40{3} | 60 | 20 | Regular 2 polyhedra per vertex | Ih | T |
UC07 | risdoh | | 6 | cubes | (12+24){4} | 72 | 48 | Rotational freedom | Oh | C4h |
UC08 | rah | | 3 | cubes | (6+12){4} | 36 | 24 | | Oh | D4h |
UC09 | rhom | | 5 | cubes | 30{4} | 60 | 20 | Regular 2 polyhedra per vertex | Ih | Th |
UC10 | dissit | | 4 | octahedra | (8+24){3} | 48 | 24 | Rotational freedom | Th | S6 |
UC11 | daso | | 8 | octahedra | (16+48){3} | 96 | 48 | Rotational freedom | Oh | S6 |
UC12 | sno | | 4 | octahedra | (8+24){3} | 48 | 24 | | Oh | D3d |
UC13 | addasi | | 20 | octahedra | (40+120){3} | 240 | 120 | Rotational freedom | Ih | S6 |
UC14 | dasi | | 20 | octahedra | (40+120){3} | 240 | 60 | 2 polyhedra per vertex | Ih | S6 |
UC15 | gissi | | 10 | octahedra | (20+60){3} | 120 | 60 | | Ih | D3d |
UC16 | si | | 10 | octahedra | (20+60){3} | 120 | 60 | | Ih | D3d |
UC17 | se | | 5 | octahedra | 40{3} | 60 | 30 | Regular | Ih | Th |
UC18 | hirki | | 5 | tetrahemihexahedra | 20{3} 15{4} | 60 | 30 | | I | T |
UC19 | sapisseri | | 20 | tetrahemihexahedra | (20+60){3} 60{4} | 240 | 60 | 2 polyhedra per vertex | I | C3 |
UC20 | - | | 2n (2n ≥ 2) | p/q-gonal prisms | 4n{p/q} 2np{4} | 6np | 4np | Rotational freedom | Dnph | Cph |
UC21 | - | | n (n ≥ 2) | p/q-gonal prisms | 2n{p/q} np{4} | 3np | 2np | | Dnph | Dph |
UC22 | - | | 2n (2n ≥ 2) (q odd) | p/q-gonal antiprisms (q odd) | 4n{p/q} (if p/q ≠ 2) 4np{3} | 8np | 4np | Rotational freedom | Dnpd (if n odd) Dnph (if n even) | S2p |
UC23 | - | | n (n ≥ 2) | p/q-gonal antiprisms (q odd) | 2n{p/q} (if p/q ≠ 2) 2np{3} | 4np | 2np | | Dnpd (if n odd) Dnph (if n even) | Dpd |
UC24 | - | | 2n (2n ≥ 2) | p/q-gonal antiprisms (q even) | 4n{p/q} (if p/q ≠ 2) 4np{3} | 8np | 4np | Rotational freedom | Dnph | Cph |
UC25 | - | | n (n ≥ 2) | p/q-gonal antiprisms (q even) | 2n{p/q} (if p/q ≠ 2) 2np{3} | 4np | 2np | | Dnph | Dph |
UC26 | gadsid | | 12 | pentagonal antiprisms | 120{3} 24{5} | 240 | 120 | Rotational freedom | Ih | S10 |
UC27 | gassid | | 6 | pentagonal antiprisms | 60{3} 12{5} | 120 | 60 | | Ih | D5d |
UC28 | gidasid | | 12 | pentagrammic crossed antiprisms | 120{3} 24{5/2} | 240 | 120 | Rotational freedom | Ih | S10 |
UC29 | gissed | | 6 | pentagrammic crossed antiprisms | 60{3} 125 | 120 | 60 | | Ih | D5d |
UC30 | ro | | 4 | triangular prisms | 8{3} 12{4} | 36 | 24 | | O | D3 |
UC31 | dro | | 8 | triangular prisms | 16{3} 24{4} | 72 | 48 | | Oh | D3 |
UC32 | kri | | 10 | triangular prisms | 20{3} 30{4} | 90 | 60 | | I | D3 |
UC33 | dri | | 20 | triangular prisms | 40{3} 60{4} | 180 | 60 | 2 polyhedra per vertex | Ih | D3 |
UC34 | kred | | 6 | pentagonal prisms | 30{4} 12{5} | 90 | 60 | | I | D5 |
UC35 | dird | | 12 | pentagonal prisms | 60{4} 24{5} | 180 | 60 | 2 polyhedra per vertex | Ih | D5 |
UC36 | gikrid | | 6 | pentagrammic prisms | 30{4} 12{5/2} | 90 | 60 | | I | D5 |
UC37 | giddird | | 12 | pentagrammic prisms | 60{4} 24{5/2} | 180 | 60 | 2 polyhedra per vertex | Ih | D5 |
UC38 | griso | | 4 | hexagonal prisms | 24{4} 8{6} | 72 | 48 | | Oh | D3d |
UC39 | rosi | | 10 | hexagonal prisms | 60{4} 20{6} | 180 | 120 | | Ih | D3d |
UC40 | rassid | | 6 | decagonal prisms | 60{4} 12{10} | 180 | 120 | | Ih | D5d |
UC41 | grassid | | 6 | decagrammic prisms | 60{4} 12{10/3} | 180 | 120 | | Ih | D5d |
UC42 | gassic | | 3 | square antiprisms | 24{3} 6{4} | 48 | 24 | | O | D4 |
UC43 | gidsac | | 6 | square antiprisms | 48{3} 12{4} | 96 | 48 | | Oh | D4 |
UC44 | sassid | | 6 | pentagrammic antiprisms | 60{3} 12{5/2} | 120 | 60 | | I | D5 |
UC45 | sadsid | | 12 | pentagrammic antiprisms | 120{3} 24{5/2} | 240 | 120 | | Ih | D5 |
UC46 | siddo | | 2 | icosahedra | (16+24){3} | 60 | 24 | | Oh | Th |
UC47 | sne | | 5 | icosahedra | (40+60){3} | 150 | 60 | | Ih | Th |
UC48 | presipsido | | 2 | great dodecahedra | 24{5} | 60 | 24 | | Oh | Th |
UC49 | presipsi | | 5 | great dodecahedra | 60{5} | 150 | 60 | | Ih | Th |
UC50 | passipsido | | 2 | small stellated dodecahedra | 24{5/2} | 60 | 24 | | Oh | Th |
UC51 | passipsi | | 5 | small stellated dodecahedra | 60{5/2} | 150 | 60 | | Ih | Th |
UC52 | sirsido | | 2 | great icosahedra | (16+24){3} | 60 | 24 | | Oh | Th |
UC53 | sirsei | | 5 | great icosahedra | (40+60){3} | 150 | 60 | | Ih | Th |
UC54 | tisso | | 2 | truncated tetrahedra | 8{3} 8{6} | 36 | 24 | | Oh | Td |
UC55 | taki | | 5 | truncated tetrahedra | 20{3} 20{6} | 90 | 60 | | I | T |
UC56 | te | | 10 | truncated tetrahedra | 40{3} 40{6} | 180 | 120 | | Ih | T |
UC57 | tar | | 5 | truncated cubes | 40{3} 30{8} | 180 | 120 | | Ih | Th |
UC58 | quitar | | 5 | stellated truncated hexahedra | 40{3} 30{8/3} | 180 | 120 | | Ih | Th |
UC59 | arie | | 5 | cuboctahedra | 40{3} 30{4} | 120 | 60 | | Ih | Th |
UC60 | gari | | 5 | cubohemioctahedra | 30{4} 20{6} | 120 | 60 | | Ih | Th |
UC61 | iddei | | 5 | octahemioctahedra | 40{3} 20{6} | 120 | 60 | | Ih | Th |
UC62 | rasseri | | 5 | rhombicuboctahedra | 40{3} (30+60){4} | 240 | 120 | | Ih | Th |
UC63 | rasher | | 5 | small rhombihexahedra | 60{4} 30{8} | 240 | 120 | | Ih | Th |
UC64 | rahrie | | 5 | small cubicuboctahedra | 40{3} 30{4} 30{8} | 240 | 120 | | Ih | Th |
UC65 | raquahri | | 5 | great cubicuboctahedra | 40{3} 30{4} 30{8/3} | 240 | 120 | | Ih | Th |
UC66 | rasquahr | | 5 | great rhombihexahedra | 60{4} 30{8/3} | 240 | 120 | | Ih | Th |
UC67 | rosaqri | | 5 | nonconvex great rhombicuboctahedra | 40{3} (30+60){4} | 240 | 120 | | Ih | Th |
UC68 | disco | | 2 | snub cubes | (16+48){3} 12{4} | 120 | 48 | | Oh | O |
UC69 | dissid | | 2 | snub dodecahedra | (40+120){3} 24{5} | 300 | 120 | | Ih | I |
UC70 | giddasid | | 2 | great snub icosidodecahedra | (40+120){3} 24{5/2} | 300 | 120 | | Ih | I |
UC71 | gidsid | | 2 | great inverted snub icosidodecahedra | (40+120){3} 24{5/2} | 300 | 120 | | Ih | I |
UC72 | gidrissid | | 2 | great retrosnub icosidodecahedra | (40+120){3} 24{5/2} | 300 | 120 | | Ih | I |
UC73 | disdid | | 2 | snub dodecadodecahedra | 120{3} 24{5} 24{5/2} | 300 | 120 | | Ih | I |
UC74 | idisdid | | 2 | inverted snub dodecadodecahedra | 120{3} 24{5} 24{5/2} | 300 | 120 | | Ih | I |
UC75 | desided | | 2 | snub icosidodecadodecahedra | (40+120){3} 24{5} 24{5/2} | 360 | 120 | | Ih | I |