In the mathematical area of game theory and of convex optimization, a minimax theorem is a theorem that claims that
under certain conditions on the sets X {\displaystyle X} and Y {\displaystyle Y} and on the function f {\displaystyle f} . It is always true that the left-hand side is at most the right-hand side (max–min inequality) but equality only holds under certain conditions identified by minimax theorems. The first theorem in this sense is von Neumann's minimax theorem about two-player zero-sum games published in 1928, which is considered the starting point of game theory. Von Neumann is quoted as saying "As far as I can see, there could be no theory of games ... without that theorem ... I thought there was nothing worth publishing until the Minimax Theorem was proved". Since then, several generalizations and alternative versions of von Neumann's original theorem have appeared in the literature.