In signal processing, overlap–save is the traditional name for an efficient way to evaluate the discrete convolution between a very long signal x [ n ] {\displaystyle x[n]} and a finite impulse response (FIR) filter h [ n ] {\displaystyle h[n]} :
where h[m] = 0 for m outside the region [1, M]. This article uses common abstract notations, such as y ( t ) = x ( t ) ∗ h ( t ) , {\textstyle y(t)=x(t)*h(t),} or y ( t ) = H { x ( t ) } , {\textstyle y(t)={\mathcal {H}}\{x(t)\},} in which it is understood that the functions should be thought of in their totality, rather than at specific instants t {\textstyle t} (see Convolution#Notation).
The concept is to compute short segments of y[n] of an arbitrary length L, and concatenate the segments together. That requires longer input segments that overlap the next input segment. The overlapped data gets "saved" and used a second time. First we describe that process with just conventional convolution for each output segment. Then we describe how to replace that convolution with a more efficient method.
Consider a segment that begins at n = kL + M, for any integer k, and define:
Then, for k L + M + 1 ≤ n ≤ k L + L + M {\displaystyle kL+M+1\leq n\leq kL+L+M} , and equivalently M + 1 ≤ n − k L ≤ L + M {\displaystyle M+1\leq n-kL\leq L+M} , we can write:
With the substitution j = n − k L {\displaystyle j=n-kL} , the task is reduced to computing y k [ j ] {\displaystyle y_{k}[j]} for M + 1 ≤ j ≤ L + M {\displaystyle M+1\leq j\leq L+M} . These steps are illustrated in the first 3 traces of Figure 1, except that the desired portion of the output (third trace) corresponds to 1 ≤ j ≤ L.
If we periodically extend xk[n] with period N ≥ L + M − 1, according to:
the convolutions ( x k , N ) ∗ h {\displaystyle (x_{k,N})*h\,} and x k ∗ h {\displaystyle x_{k}*h\,} are equivalent in the region M + 1 ≤ n ≤ L + M {\displaystyle M+1\leq n\leq L+M} . It is therefore sufficient to compute the N-point circular (or cyclic) convolution of x k [ n ] {\displaystyle x_{k}[n]\,} with h [ n ] {\displaystyle h[n]\,} in the region [1, N]. The subregion [M + 1, L + M] is appended to the output stream, and the other values are discarded. The advantage is that the circular convolution can be computed more efficiently than linear convolution, according to the circular convolution theorem:
where: