In number theory, Jordan's totient function, denoted as J k ( n ) {\displaystyle J_{k}(n)} , where k {\displaystyle k} is a positive integer, is a function of a positive integer, n {\displaystyle n} , that equals the number of k {\displaystyle k} -tuples of positive integers that are less than or equal to n {\displaystyle n} and that together with n {\displaystyle n} form a coprime set of k + 1 {\displaystyle k+1} integers.
Jordan's totient function is a generalization of Euler's totient function, which is the same as J 1 ( n ) {\displaystyle J_{1}(n)} . The function is named after Camille Jordan.