In algebraic geometry, a divisorial scheme is a scheme admitting an ample family of line bundles, as opposed to an ample line bundle. In particular, a quasi-projective variety is a divisorial scheme and the notion is a generalization of "quasi-projective". It was introduced in (Borelli 1963) (in the case of a variety) as well as in (SGA 6, Exposé II, 2.2.) (in the case of a scheme). The term "divisorial" refers to the fact that "the topology of these varieties is determined by their positive divisors." The class of divisorial schemes is quite large: it includes affine schemes, separated regular (noetherian) schemes and subschemes of a divisorial scheme (such as projective varieties).