Definitions, for all a , b {\displaystyle a,b} and S ≠ ∅ : {\displaystyle S\neq \varnothing :} | a R b ⇒ b R a {\displaystyle {\begin{aligned}&aRb\\\Rightarrow {}&bRa\end{aligned}}} | a R b and b R a ⇒ a = b {\displaystyle {\begin{aligned}aRb{\text{ and }}&bRa\\\Rightarrow a={}&b\end{aligned}}} | a ≠ b ⇒ a R b or b R a {\displaystyle {\begin{aligned}a\neq {}&b\Rightarrow \\aRb{\text{ or }}&bRa\end{aligned}}} | min S exists {\displaystyle {\begin{aligned}\min S\\{\text{exists}}\end{aligned}}} | a ∨ b exists {\displaystyle {\begin{aligned}a\vee b\\{\text{exists}}\end{aligned}}} | a ∧ b exists {\displaystyle {\begin{aligned}a\wedge b\\{\text{exists}}\end{aligned}}} | a R a {\displaystyle aRa} | not a R a {\displaystyle {\text{not }}aRa} | a R b ⇒ not b R a {\displaystyle {\begin{aligned}aRb\Rightarrow \\{\text{not }}bRa\end{aligned}}} |